Waveguide mode deformation in free-electron lasers

J. Fajans
Department of Physics, University of California, Berkeley, Berkeley, California 94720

J. S. Wurtele
Department of Physics and Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 21 February 1989; accepted 13 June 1989)

The free-electron laser (FEL)-induced modifications to the vacuum waveguide modes are calculated for low-frequency FEL's. Typically, the mode modifications are large and exhibit complicated axial behaviors. In addition to the wave component with a near vacuum wavenumber, components at two upshifted wavenumbers must be analyzed. Electron beam surface charges and currents are also important. At low gain, effects from all three roots of the FEL dispersion relation must be included. The dominant modification is due to the electron beam space-charge wave.

I. INTRODUCTION

The free-electron laser (FEL) is an efficient source of tunable coherent radiation. Since the FEL was first envisioned,

\(^{1,2}\) lasing has been achieved from visible to microwave frequencies\(^ {3}\) and the theoretical understanding of FEL's has increased proportionately. Experimental measurements of wave amplitude and phase are in good agreement with theory in both the linear and nonlinear regimes.\(^ {4,5}\) To control the electromagnetic radiation wave, experiments employ waveguides or optical cavities. When cavities are used, the vacuum interaction length is of the order of one Rayleigh range; however, many planned and in progress optical wavelength FEL's require interaction lengths of many Rayleigh ranges. To maintain strong coupling between the wave and the electron beam, these experiments must rely on the predicted phenomenon of optical guiding.

Optical guiding\(^ {6-11}\) is expected to occur when the FEL interaction produces an index of refraction greater than unity. Since the wave phase velocity is then slowed inside the electron beam, the beam will guide the radiation in a manner similar to the guiding of light by an optical fiber. Consequently, the wave does not disact as it would in the absence of the FEL interaction, and interaction lengths of many Rayleigh ranges are predicted. Optical guiding is particularly important for both high efficiency lasers operating at infrared and shorter wavelengths, and for lasers which amplify spontaneous emission at extreme ultraviolet and shorter wavelengths. Numerous experimental efforts are underway to verify the optical guiding effect. Measurements of the wave phase, which is related to FEL-induced changes in the real part of the index of refraction, have been made using interferometric techniques.\(^ {5,12}\) Experiments have attempted to measure mode profile changes directly.\(^ {13-16}\) Bending effects in FEL oscillators\(^ {17}\) may also be the result of optical guiding effects.

When the electromagnetic wavelength is large, the wave must be guided by an external structure; typically a waveguide is employed. Consequently, experiments operating at these wavelengths cannot observe "classical" optical guiding. Even when optical guiding effects are strong, the radiation is never completely confined to the electron beam and the waveguide remains important. However, the transverse structure of the electromagnetic radiation is modified by the FEL interaction. Physically, this modification is the waveguide analog of optical guiding; the electron beam undergoing the FEL interaction generates an index of refraction that changes the mode profile. The purpose of this paper is to analyze these changes in the field profile during the FEL interaction.

Motivation for this paper comes from several experiments, including measurements of the mode composition in an overmoded oscillator\(^ {15}\) and direct measurements of the transverse electric field in a FEL amplifier operating with only one vacuum mode above cutoff.\(^ {14,15}\) These experiments show that substantial mode profile modifications occur. We will show that the mode profile changes are influenced by both space-charge and electromagnetic effects, and that the space-charge fields can dominate the profile modifications.

The following simple argument demonstrates that the profile modifications in a waveguide FEL may be large. The relation between the normalized wavenumber shift, \(\delta k/k\), resulting from a dielectric in a waveguide excited by frequency \(\omega\) is given by the perturbation formula\(^ {18}\)

\[
\frac{\delta k}{k} = \frac{\omega^2}{c^2 k^2} \frac{\int \Delta \varepsilon E^2 \, dS}{\int (\varepsilon_0 \mu_0 + \mu_s H^2) \, dS},
\]

When the electron beam radius is much smaller than the waveguide radius, the expression for \(\delta k/k\) becomes

\[
\delta k/k \sim A_{\text{eb}}/A_{\text{wg}} \Delta \varepsilon .
\]

Consequently, \(\Delta \varepsilon \sim (A_{\text{wg}}/A_{\text{eb}}) \delta k/k\), where \(A_{\text{wg}}\) and \(A_{\text{eb}}\) are, respectively, the areas of the waveguide and the electron beam. Free-electron lasers operating at low frequencies can have ratios of \(\delta k/k > 0.03\).\(^ {19,20}\) If the beam area ratio is 25,\(^ {19}\) the required dielectric constant is 1.75. Thus these FEL's have a significant perturbed dielectric constant and we would anticipate strong local perturbations to the waveguide mode in the region of the electron beam. This picture is, of course, far too simplistic to accurately model the perturbed fields. While an appropriate dielectric constant can be constructed,\(^ {22}\) it has complicated tensor properties and is not well described by the isotropic dielectric constant discussed.
above. (In addition, as discussed in the following paragraph, the electron beam also generates fields that vary with wavenumbers other than the input wavenumber. These "parasitic" emissions are difficult to model with a dielectric.)

In one set of experiments14,15 designed to study the mode profile changes, the electric field is measured as a function of the transverse position. Most of the radiation power is carried by an electromagnetic wave whose profile is close but not identical to the profile of a standard vacuum waveguide mode. This wave propagates with wavenumber $k_x + \delta k$, where k_x is the axial wavenumber of the appropriate vacuum waveguide mode, and δk is the FEL-induced wavenumber shift. The FEL space-charge-induced fields propagate with the wavenumber $k_x + k_{w} + \delta k$, where $k_{w} = 2\pi/l_{w}$ and l_{w} is wiggl wavelength. There is also a second electromagnetic mode with wavenumber $k_x + 2k_{w} + \delta k$. Furthermore, the wiggling motion and the bunching in the ponderomotive wave results in pseudosurface charge and surface current generated components of the electric field, which vary with the axial wavenumbers $k_x + \delta k$ and $k_x + 2k_{w} + \delta k$. All these components will interfere with each other, causing the details of the observed mode profile to depend on the axial position.

Our model, presented in Sec. II, assumes that, in the absence of the electron beam, the radiation propagates in a standard vacuum waveguide mode. For simplicity, we give examples for the TE\textsubscript{11} waveguide mode. Next we postulate an electron beam with a density modulation resulting from the FEL interaction, characterized by the induced wavenumber shift δk. The beam is assumed uniform out to the beam radius and independent of the azimuthal angle. Then we assume that the beam is undulated by the FEL wiggl. Finally, straightforward calculations yield the three-dimen- ional electric and magnetic field profile. To calculate δk we employ an extended one-dimensional linear theory,4,5,23 in which the radiation and space-charge wave coupling coefficient are calculated using overlaps integrals and a space-charge reduction parameter.24 In the high gain regime, the mode with the exponentially growing root of the cubic FEL dispersion relation dominates the interaction, but in the low gain regime all of the FEL cubic roots must be retained.23 Note that we require an accurate value for the induced wavenumber shift. Since we postulate δk, our approach is not fully self-consistent, but it has the virtue that the equations for the fields can be easily interpreted. In Sec. III we plot the fields under different conditions. We discuss scaling and self consistency in Sec. IV, and conclude in Sec. V.

Our derivation, which is valid in both the Compton and the Raman (collective) regimes, resembles, in some respects, earlier work by Freund and Ganguly25 and Uhm and Davidson.26 However, the emphasis in these works was the calculation of the FEL gain and the authors did not explicitly construct the wave profiles. The authors considered either idealized, nonphysical "shell" electron beams, rather than realizable solid electron beams, or considered only Compton FELs. The case of a Raman FEL with a solid electron beam was not examined. Fruchtman studied a sheet-beam FEL.27 Many workers28-32 have developed particle simulations to model the FEL in a waveguide. As with many optical guid- ing calculations, these nonlinear simulations do not treat the full three-dimensional nature of the electrostatic mode. The axial space-charge electric field is generally used only in the longitudinal particle dynamics, and the radial component of this field is neglected in calculating the local electric field profile and the transverse particle dynamics. Some simulations expand the transverse field in a sum of vacuum waveguide modes. Such expansions do not allow for any surface charge effects, because, by construction, these expansions do not include modes for which $\mathbf{V} \cdot \mathbf{E} \neq 0$. However, as discussed above, there are additional modifications to the field at the rf wavenumber $k_x + \delta k$ due to the pseudosurface charge generated components. Consequently, such methods cannot include the full, rich range of profile modification phenomena. More recently, in a paper33 that complements this work, the linear kinetic theory of the Raman FEL in waveguides has been analyzed.

II. BASIC THEORY

In this section, we calculate the mode deformation for a wiggling electron beam, which is axially modulated and has a uniform transverse density profile. The electron beam, with axial velocity v_{x} and radius b, propagates in a circular waveguide of radius a (Fig. 1). A wiggl field causes the electron beam to helically undulate with period l_{w}, so that the total beam velocity is

$$v = v_{x} \hat{z} + v_{w}(\hat{x} \cos k_{w}x - \hat{y} \sin k_{w}x),$$

where $k_{w} = 2\pi/l_{w}$ is the wiggler wavenumber and v_{w} is the wiggl induced transverse velocity. Here, and in the rest of this paper, three-dimensional wigglomer effects are ignored. The electron beam is assumed to be axially modulated with amplitude σ', thus

$$\rho = u(b-r)(\sigma' e^{i\omega t -(\delta k + k_{w} x)} + c.c.),$$

where u is the Heaviside function and ω is the frequency of the incident radiation. The unperturbed wavenumber k_{x} of the incident radiation depends on the particular waveguide mode in which the radiation propagates. The radius b of the

![FIG. 1. Beam and waveguide geometry.](image-url)
A. Axial current modes

The fields resulting from the axially directed current \(J_z \) are readily identified as the space-charge wave fields. The electric field is assumed to be of the form

\[
E(r) = \text{exp}(i(\theta - k_z z) + c.c.),
\]

and from here on the complex conjugate term will be dropped. Inserting the expression for \(E \) into the Helmholtz equation (Eq. (7)) and factoring out the time dependence gives

\[
(\nabla^2 + k_z^2)E(r) e^{-ik_z z} = ik_z Z_0 j_0 \frac{\mu_e}{\epsilon_0} \left((1 - k_z^2/k_r^2) e^{-ik_r r} \right),
\]

where the axial wavenumber is \(k_z = k_r + \delta k + 2k_w \). For \(r < b \), the inhomogeneous solution of this equation is

\[
E_{1,1,1} = ((Z_0 j_0 \frac{\mu_e}{\epsilon_0})/k_z) \frac{\mu_e}{\epsilon_0} e^{-ik_z z}, \quad r < b,
\]

and the corresponding inhomogeneous magnetic field is equal to zero.

In order to satisfy the boundary conditions at \(r = b \), an appropriate solution of the homogeneous equation

\[
(\nabla^2 + k_z^2)E_{1,b} e^{-ik_z z} = 0
\]

must be found by matching the solutions of Eq. (10) across the beam boundary. The complete solution will be

\[
E = \begin{cases} E_{1,b} + E_{1,1,1}, & r < b, \\ E_{1,b}, & b < r < a, \end{cases}
\]

and

\[
H = \begin{cases} H_{1,b}, & r < b, \\ H_{1,b}, & b < r < a. \end{cases}
\]

The general form of the homogeneous fields are given by the well-known Bessel functions shown in Table I, where we have defined the radial wavenumber \(k_r = \sqrt{k_z^2 - k_T^2} \).

For perfectly conducting waveguide walls, \(E_r (r = a) = 0 \). Thus the coefficient \(\alpha_1 \) in Table I is

\[
\alpha_1 = J_0(k_1a)/Y_0(k_1a).
\]

Because the gradient of \(J_r \) is continuous across the beam boundary at \(r = b \), there is no charge layer on the beam surface; consequently the electric field must be continuous across the beam boundary. This leads to two conditions, one on \(E_z \),

\[
A \left[J_0(k_1b) + \alpha_1 Y_0(k_1b) \right] - B J_0(k_1b) = 0,
\]

and one on \(E_r \),

\[
A \left[J_1(k_1b) + \alpha_1 Y_1(k_1b) \right] - B J_1(k_1b) = 0.
\]

These two equations are solved for \(A \) and \(B \).

B. Transverse modes

The solution for the fields produced by the transverse currents is somewhat more complicated than the solution for the axial current. The transverse current is comprised of two components, one with wavenumber \(k_z + \delta k \) and the other with wavenumber \(k_z + \delta k + 2k_w \), corresponding to the \(J_0 \) and \(J_2 \) terms in Eq. (5). Since the method used for the \(J_2 \) current is nearly identical to the method used for the \(J_0 \) cur-
rent, we will only discuss the latter in detail. Assuming the form $E_0 \exp[i(\omega t - k_0 z)]$ for the electric field, inserting this form into the Helmholtz equation [Eq. (7)], and factoring out the time dependence results in the relation

$$\left(\nabla^2 + k_0^2\right)E_{0e} = -(i/2)k_0 Z_0 u(b-r)(\hat{\rho}_{e} + i\hat{\phi}_{e})e^{-ik_0 z},$$

(16)

where the new axial wavenumber is $k_0 = k + \delta k$. The inhomogeneous solution of this equation is

$$E_{0e} = (i/2)k_0 Z_0 (-\hat{\rho}_{e} + i\hat{\phi}_{e})u(b-r).$$

(17)

Here the radial wavenumber is $k_0 = \sqrt{k_0^2 - k_0^2}$. The corresponding inhomogeneous magnetic field is

$$H_{0t} = (v_0/k_0)(2k_0/2 - k_0^2) e^{i\phi}(-\hat{r} + i\hat{\theta})u(b-r).$$

(18)

Once again the boundary conditions at $r = a$ and $r = b$ requires the addition of a solution to the homogeneous equation,

$$\left(\nabla^2 + k_0^2\right)E_{0h} = 0.$$

(19)

The solutions to this equation can be divided into TE-like and TM-like modes, as shown in Tables II and III.

Equation (19) must be solved inside and outside the electron beam and then matched across the beam boundary. The complete solution will then be

$$E_0 = \begin{cases} E_{0h}, & r < b, \\ E_{0t}, & b < r < a, \end{cases}$$

(20)

and

$$H_0 = \begin{cases} H_{0h}, & r < b, \\ H_{0t}, & b < r < a. \end{cases}$$

(21)

The boundary matching conditions are complicated by the presence of a surface charge and a surface current layer at the beam edge. The surface charge and current are an artifact of the previous simplification that the beam boundary is fixed at $r = b$. Although this assumption is made in almost all FEL theory, the beam of course, is not fixed, but instead undulates with the wigglers periodicity and propagates axially. This undulation can be approximated as a surface charge and surface current, and is readily explained by Fig. 2. As shown in the top of the figure, the true beam undulates and is density modulated. (For pictorial simplicity, we have chosen the density modulation to have half the period of the undulation, which occurs when $k_z = k_0$.) The beam can be split into two superimposed components. The first, shown in the middle of Fig. 2, is a fixed boundary, density modulated beam, and is the only component commonly analyzed. The second component, at the bottom of the figure, consists of all the real and virtual charges required to account for the beam edge oscillation. To retain analytic tractability we compress this second component into a surface layer of negligible thickness at the fixed beam boundary ($r = b$), resulting in a surface charge and surface current. Note that these charges and currents are composed of components at both $k_z = k_0$ and $k_z = +2k_0$.

The continuity equation at the beam boundary $r = b$ must be satisfied. However, this imposes only a nonrestrictive condition on the beam surface charge and current; in fact, the continuity equation can be satisfied with a surface current only or a surface charge only. As explained above, the correct surface charge and current are found by compressing the beam and determining the charge and current of the compressed layer. With the undulating velocity defined in Eq. (1), the fluctuation of radius of the beam envelope is
TABLE III. TM fields driven by the transverse beam currents.

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_x</td>
<td>$E_x (k_0 r) e^{i(k_0 r - k_x r)}$</td>
</tr>
<tr>
<td>E_y</td>
<td>$i(E/k_0 r) [J_1(k_0 r) + a_{E0} Y_1(k_0 r)] e^{i(k_0 r - k_y r)}$</td>
</tr>
<tr>
<td>E_z</td>
<td>$iE(k_0 r) / k_0 J_1(k_0 r) e^{i(k_0 r - k_z r)}$</td>
</tr>
<tr>
<td>H_x</td>
<td>$-E_x/Z_{E0}$</td>
</tr>
<tr>
<td>H_y</td>
<td>E_y/Z_{E0}</td>
</tr>
<tr>
<td>H_z</td>
<td>0</td>
</tr>
</tbody>
</table>

$Z_{E0} = k_0 Z_0 / k_z$

\[
\tilde{r}_1 = \left(v_w/k_w v_x \right) \sin(\phi + k_w z),
\]
and, assuming that $\tilde{r}_1 < b$, the corresponding surface charge density is

\[
\sigma = \tilde{r}_1 \rho
= -i(v_w/2k_w v_z) (j_0 e^{i\phi} - j_2 e^{-i\phi}),
\]

where j_0 and j_2 are defined in Eq. (5). The axial surface current is found to be

\[
\mathcal{J} = \tilde{r}_1 J_z = i v_z
= -i(v_w/2k_w) (j_0 e^{i\phi} - j_2 e^{-i\phi}) \hat{z}.
\]

The surface current has an azimuthal as well as an axial component, but the azimuthal component is smaller by a factor v_w/v_z, and therefore is neglected in this analysis.

Using the surface charge in Eq. (23) and current in Eq. (24) to determine the jump boundary condition, the matching conditions at $r = b$ are, for the j_0 component,

\[
E^{x}_{\omega a} = E^{x}_{\omega i} + i(v_w/2k_w v_z) e^{i\phi}
\]

and

\[
H^{x}_{\omega a} = H^{x}_{\omega i} + i(v_w/2k_w) e^{i\phi}.
\]

These boundary conditions lead to

\[
\begin{align*}
H_x &= C [J_1(k_0 b) + \alpha_{H0} Y_1(k_0 b)] - DJ_1(k_0 b) = 0, \\
H_y &= C [J_1(k_0 b) + \alpha_{H0} Y_1(k_0 b)] - DJ_1(k_0 b) \\
 &= i v_w / k_0 Z_{E0} / (2k_0^2) \rho, \\
E_x &= E [J_1(k_0 b) + \alpha_{E0} Y_1(k_0 b)] - FJ_1(k_0 b) = 0, \\
E_y &= E [J_1(k_0 b) + \alpha_{E0} Y_1(k_0 b)] - FJ_1(k_0 b) \\
 &= i v_w / Z_{E0} k_0 / (2k_0^2) - i v_w / Z_{E0} / k_w.
\end{align*}
\]

The additional boundary conditions on E_x and E_y are redundant. The boundary at the waveguide wall ($r = a$) requires that

\[
\begin{align*}
\alpha_{H0} &= -J_1(k_0 a) / Y_1(k_0 a), \\
\alpha_{E0} &= -J_1(k_0 a) / Y_1(k_0 a).
\end{align*}
\]

The system of linear equations [Eqs. (27)] is readily solved for C, D, E, and F, and the pairs CD and EF do not cross couple. Note that nowhere in this derivation is the vacuum waveguide mode explicitly specified. The vacuum waveguide mode is indirectly chosen through the value of k_z, a value of k_z close to the value for a given vacuum mode will cause the appropriate Bessel functions in Eqs. (27) to be near zero, resulting in a large corresponding multiplying coefficient.

The fields from the transverse current j_2 can be found by analogy with the solution for j_0. We define a new axial wavenumber $k_2 = k_2 + \delta k + 2k_w$, a new radial wavenumber $k_2 = \sqrt{k_0^2 - k_2^2}$, analogous Z_{H2} and Z_{E2}, and use the ansatz $E = E_0 \exp[i(k_0 z - k_2 x)]$. An examination of Eq. (4) shows that the inhomogeneous factors, which would multiply $\exp(-ik_z z)$ in equations analogous to the inhomogeneous Eqs. (16)–(18), combine in the form $(\tilde{\rho} - i\phi) \times \exp(-i\phi)$. Furthermore, the surface charge and surface current, and thus the jump in the field at the beam boundary [see Eq. (25)], also vary as $(\tilde{\rho} - i\phi) \exp(-i\phi)$. The TE and TM modes of Tables II and III are replaced by the corresponding modes that propagate with $\exp(-ik_z z)$ and have an $\exp(-i\phi)$ azimuthal variation; also, α_{H2} and α_{E2} are analogously defined. The new boundary conditions can then be derived and are almost identical in form to Eqs. (27). The only changes in the boundary condition are that the rhs of the H_x boundary equation and the second term (which arises from the surface current) on the rhs of the H_y boundary equation are both multiplied by -1.

FIG. 2. Decomposition of the true beam into a nonwiggling component and an edge component. For simplicity, the beam is undulated by a linear wiggler and is assumed to be charge neutral.
III. MODE DEFORMATION

The method of solution developed above requires that the values of δk and \mathcal{C} are known from a quasi-one-dimensional theory, in which three-dimensional effects are included by the calculation of appropriate overlap parameters. Since such theories are in excellent agreement with experimental results, the assumption that the complete inclusion of three-dimensional effects will produce only small changes in the parameters δk and \mathcal{C} appears warranted.

Free-electron lasers operate in both the linear and nonlinear regimes, and, essentially in the low gain regime, several FEL modes (several δk, \mathcal{C}) may be simultaneously important. An accurate description of the interaction requires the initial value problem be solved through a Laplace transform technique.

A. Field profile with a single FEL mode

Linear, one-dimensional FEL theory is normally based on solving the cubic equation

$$\delta k (\delta k - \Theta + \Theta_p) (\delta k - \Theta - \Theta_p) + Q = 0,$$

(29)

where Θ is the FEL energy detuning, Θ_p is the normalized plasma frequency, and Q is the coupling constant. While this equation is inherently one dimensional, three-dimensional effects can be included by multiplying the basic coupling constant by an overlap integral and by reducing the plasma frequency because of the finite size of the electron beam and the presence of the perfectly conducting waveguide walls. This cubic has three solutions, leading to three distinct FEL modes. The fraction of the input power that couples into each FEL mode is a function of the detuning, and can be found by solving the initial value problem. In this section we assume that only a single FEL mode contributes significantly to transverse profile modification, and therefore only one δk need be considered. The case of three FEL modes will be discussed in the next section.

One consequence of the assumption that the FEL has infinite longitudinal extent and that δk is independent of z is that the electromagnetic radiation supported by the postulated beam density perturbation will have the same transverse profile at all values of z having the same phase in the wiggler (i.e., $k_w z$ differing by a multiple of 2π). This transverse profile is, of course, multiplied by an overall constant which determines its local, instantaneous phase and magnitude. This constant is proportional to the amplitude of the beam perturbation \mathcal{C}; thus \mathcal{C} merely fixes the initial magnitude and phase of the electromagnetic wave. It does not affect the transverse profile. This freedom in the choice of \mathcal{C} allows us to specify the amplitude and phase of the electromagnetic wave at any arbitrary position. It is most convenient to choose the magnitude of \mathcal{C} so that, at $z = 0$, the electromagnetic power carried by the wave is unity, and to choose the phase of \mathcal{C} so that the electromagnetic (EM) wave phase at $t, x = 0$ is zero. We find that the substitution $\mathcal{C} = \delta k \mathcal{C}$, where \mathcal{C} is, to first order, independent of δk, makes the electromagnetic power independent of δk. This substitution can be motivated by solving the complete FEL problem and noting that the beam density perturbation is proportional to δk. (The beam density is proportional to δk since, from the eikonal form of the wave equation used in one-dimensional FEL theory,4)

$$i \delta k E \propto (exp [(\omega t - (k_z + k_w) z)] \mathcal{C})$$

Experimentally, only the total electromagnetic field can be observed. However, since each of the three driving currents of the previous section has a different wavenumber $k_z + \delta k (k_0 \text{ current})$, $k_z + \delta k + k_w (k_1 \text{ current})$, $k_z + \delta k + 2k_w (k_2 \text{ current})$, it is useful to separately display the fields driven by each current. The different wavenumbers cause the respective fields to superimpose with varying degrees of constructive and destructive interference. When the common periodicity $k_z + \delta k = k_0$ is factored out, the field generated by the k_0 current is invariant, the field of the k_1 current has the period l_w (the wiggler period), and the field of the k_2 current has the period $l_w/2$. As we will show in Fig. 6, within one wiggler period the total field profile has eight characteristic shapes.

In Figs. 3–5 we plot the transverse profiles for each of the field components. The FEL parameters are typical of the experiment described in Ref. 14. The waveguide radius is $a = 1.27$ cm, the beam radius is $b = 0.254$ cm, and the frequency, $f = 11$ GHz, is relatively close to the waveguide cutoff frequency of 6.9 GHz. The wiggler period is $l_w = 3.3$ cm, and the normalized beam velocities are $\beta_z = 0.624$ and $\beta_l = 0.1$. To highlight the profile modifications, we choose a large wavenumber shift of $|\delta k| = 3 \text{ m}^{-1}$.

![FIG. 3. The field profiles, in the plane $y = 0$, versus x for $\delta k = 3 \text{ m}^{-1}$.](image-url)
Several features common to low-frequency operation are illustrated in Fig. 3, where $\delta k = +3 \text{ m}^{-1}$. First, the profile modification resulting from the k_2 current is almost identical to the modification resulting from the k_1 current. This equality arises because these two currents have the same magnitude, and the field equations driven by the two transverse currents are virtually the same. Second, there is a sharp discontinuity at the beam edge, which reflects the beam surface charge and current given by Eqs. (23) and (24). Of course, in the real world this discontinuity does not exist and the discontinuity is instead manifested by a sharp field gradient. The gradients extend over the width of the beam undulation, and the total field change is approximately equal to the magnitude of the discontinuity. Third, the field profile resulting from k_1, the longitudinal space-charge wave current, is much larger than the field modifications resulting from the transverse currents. Since the space-charge wave is driven by terms proportional to v_y, the transverse modifications are driven by terms proportional to v_w, and since $v_w < v_y$, the space-charge wave will generally dominate the profile modification (at least at low frequencies). However, since the gain δk is proportional to v_w, the fraction of the mode profile modification resulting from the space-charge wave decreases as $\delta k \propto v_w$ is increased. Increasing the wiggler field while other parameters are held fixed also moves the FEL from the collective (Raman) regime into the Compton regime.

Figure 4 shows the profile for $\delta k = -3 \text{ m}^{-1}$. The results are similar to the $\delta k = +3 \text{ m}^{-1}$ case, except as expected, the profiles are inverted. For real values of δk, the profiles for each of the three wavenumbers k_0, k_1, and k_2 are either pure real or pure imaginary, but for imaginary values of δk the profiles are complex, as shown in Fig. 5. Here the major profile modification for the k_0 and k_2 terms is a phase shift across the waveguide. Even for imaginary values of δk, however, the mode profile modifications are still dominated by the space-charge wave fields.

The total time averaged electric field profiles are shown in Fig. 6 for $\delta k = 1 \text{ m}^{-1}$ and $\delta k = i \text{ m}^{-1}$. The uppermost profiles are at $z = 0$ cm and each succeeding profile is spaced by $\Delta z = l_w / 8 = 0.4125$ cm. Large variations with z are observed for E_x, but only small variations in E_h and E_z. For $\delta k = 1 \text{ m}^{-1}$, at $z = l_w / 4$ and at $z = 3l_w / 4$, the space-charge wave component k_1 is asymmetric and dominates the mode profile, but at $z = 0$ and $z = l_w / 2$ the space-charge wave phase is orthogonal to the rf wave phase and its contribution is small and symmetric. The surface boundary discontinuity is strongest at $z = l / 4$ and $z = 3l_w / 4$, because here the contributions from the k_0 and k_2 currents add in phase. At $z = 0$ and $z = l_w / 2$, however, the contributions from these two currents are out of phase and the boundary discontinuity disappears. Similar behavior is observed for $\delta k = i \text{ m}^{-1}$.

B. Field profile with multiple FEL modes

The initial conditions at the FEL interaction region entrance split the input power into several modes. In one-dimensional theory, each mode has a wavenumber shift δk_i, which is a solution of the dispersion relation Eq. (29). The fraction of the input power in each of the three δk_i modes is given by the residues R_i, where

$$R_i = \text{Res} \left(\frac{(\delta k - \Theta + \Theta_p)(\delta k - \Theta - \Theta_p)}{\delta k(\delta k - \Theta + \Theta_p)(\delta k - \Theta - \Theta_p) + \Omega} \right)_{\delta k = \delta k_i}.$$

(30)

The total electric field is then given by

$$E_{id} = \sum_{i=1}^{3} R_i e^{i(\omega t - (k_i + \delta k_i)z)}.$$

(31)

Note that the residues satisfy (and can alternately be found from) the three conditions.
The three-dimensional field profile is found by adding together appropriate contributions from each FEL mode. Specifically, for a given set of FEL parameters, we first solve for the three distinct sets of δk_i and \mathcal{P}_i. Next the field profiles for each of these individual δk_i are determined. Finally, the three field patterns are superimposed, using the \mathcal{P}_i as weights. Defining $\mathcal{P}(r, \phi)$ to be the unperturbed field profile, $\mathcal{P}_m(r, \phi, \delta k)$ to be the portion of the field profile modification at the position (r, ϕ) due to the wavenumber mode m, that results from a given value of δk, the field for a single FEL mode can be written as

\[
E = e^{i \Delta z - (k_0 + \delta k)z} \left(\mathcal{P}(r, \phi) \right) + \sum_{m=0}^{2} \mathcal{P}_m(r, \phi, \delta k)e^{-imk_0 x}. \tag{35}
\]

Then the total field is found by summing over all the FEL modes:

\[
E = e^{i \Delta z - k_0 z} \left(\mathcal{P}(r, \phi) \sum_{i=1}^{3} \mathcal{P}_i e^{-ik_0 z} \right) + \sum_{i=1}^{3} \mathcal{P}_i e^{-ik_0 z} \sum_{m=0}^{2} \mathcal{P}_m(r, \phi, \delta k_i)e^{-imk_0 x}. \tag{36}
\]

Since this sum involves nine different profiles, the behavior of the resulting solutions is quite complex.

Close examination of the single FEL mode solutions shows that the deviation from the unperturbed waveguide field depends almost linearly on δk. For the parameters of Fig. 3, and for $\delta k < 20 \text{ m}^{-1}$, the nonlinear component of the deviation is less than one percent of the total deviation. Thus we can assume that, to a good approximation,

\[
\mathcal{P}_m(r, \phi, \delta k) = \delta k \mathcal{P}_m(r, \phi). \tag{37}
\]

Using this substitution, the total field is

\[
E = e^{i \Delta z - k_0 z} \left(\mathcal{P}(r, \phi) \sum_{i=1}^{3} \mathcal{P}_i e^{-ik_0 z} \right) + \sum_{m=0}^{2} \mathcal{P}_m(r, \phi)e^{-imk_0 x} \sum_{i=1}^{3} \mathcal{P}_i \delta k_i e^{-ik_0 z}. \tag{38}
\]

or

\[
E = e^{i \Delta z - k_0 z} \left(\sum_{i=1}^{3} \mathcal{P}_i e^{-ik_0 z} \right) \left(\mathcal{P}(r, \phi) \right) + \sum_{m=0}^{2} \mathcal{P}_m(r, \phi)e^{-imk_0 x} \sum_{i=1}^{3} \mathcal{P}_i \delta k_i e^{-ik_0 z}. \tag{39}
\]

Defining the composite δk-scalar κ,

\[
\kappa = \frac{\sum_{i=1}^{3} \mathcal{P}_i \delta k_i e^{-ik_0 z}}{\sum_{i=1}^{3} \mathcal{P}_i e^{-ik_0 z}}, \tag{40}
\]

then

\[
E = e^{i \Delta z - k_0 z} \left(\sum_{i=1}^{3} \mathcal{P}_i e^{-ik_0 z} \right) \left(\mathcal{P}(r, \phi) + \kappa \sum_{m=0}^{2} \mathcal{P}_m(r, \phi)e^{-imk_0 x} \right). \tag{41}
\]
Using the definition of \mathcal{D} we can rewrite this as

$$E = e^{i(\omega t - (k_0 + \kappa)z)} \left(e^{i k_0 x} \sum_{i=1}^{3} R_i e^{-i \delta k_i x} \right) \times \left(\frac{d}{dr} (r, \phi) + \sum_{m=0}^{2} \frac{R_m (r, \phi, \kappa)}{m} e^{-i m k_0 z} \right). \tag{42}$$

Except for the transversely independent factor ($e^{i k_0 x} \sum_{i=1}^{3} R_i e^{-i \delta k_i x}$), this expression is exactly equivalent to the field from a single value $\delta k = \kappa$. In other words, the complete mode profile, including the initial conditions and the three FEL modes, can be found by assuming that there is just one mode with the single composite δk-scalar defined in Eq. (40).

The composite δk-scalar can be alternately expressed as

$$\kappa = -i \frac{\partial}{\partial z} \ln \left(\sum_{i=1}^{3} R_i e^{-i \delta k_i x} \right) = -i \frac{\partial}{\partial z} \ln \left(e^{-i(\omega t - k_0 x)} E_{1D} \right). \tag{43}$$

The composite δk-scalar κ has the intuitively plausible interpretation as the change with z of the slowly varying amplitude of the one-dimensional (1-D) solution. Alternately, using κ to construct the mode profiles at some axial position z is equivalent to using the following procedure: First, determine the local electron beam density modulations in a region near z. Next, assume that the beam has an identical density modulation for all other values of z. Note that although this modulation is periodic, its amplitude can be growing or decaying if the local modulation on the original beam is growing or decaying. By construction, this modulation will produce a FEL wavenumber shift δk exactly equal to the composite δk-scalar κ. Finally, find the mode profile at z on the idealized beam. This calculated mode profile should be very close to the actual mode profile. Thus the use of the composite δk-scalar is equivalent to assuming that the local beam modulation persists in a region large enough that any transients in the profile associated with changes in κ have died out. Formally,

$$1 \gg \frac{\Delta \kappa}{\kappa k \Delta z}. \tag{44}$$

This relation is required by the eikonal approximation, which underlies much FEL theory, and is usually satisfied.

For certain values of the detuning Θ, one or two of the R_i may be close to zero. For example, for the experiments of Ref. 18, typical values of the roots and residues are 4.348, -3.821, -0.527 and 0.051, -0.085, 1.035, respectively. Since the last residue is at least $12 \times$ greater than the first two residues, the one-dimensional behavior is dominated by the last root, and the first two roots can be ignored without introducing any large errors. However, it is not permissible to ignore these small roots in the three-dimensional case. If we expand κ in small $\delta k, z$, we find

$$\kappa = \frac{\Sigma_i \delta k_i z - \Sigma_i \delta k_i z^2 + \cdots}{\Sigma_i \delta k_i z - \Sigma_i \delta k_i z^2 + \cdots}. \tag{45}$$

Using the identities in Eqs. (32)–(34), this simplifies to

$$\kappa = -k^2 \sum \delta k_i^2. \tag{46}$$

Because roots with very little power (small R_i), tend to have profiles very far from the unperturbed field profile (large δk_i), all the roots contribute approximately equally.

Equation (46) demonstrates that, as expected, the field profile modification at $z = 0$ is zero, and the profile modification grows parabolically with z. From Eq. (40), we see that when one of the roots corresponds to a growing mode, κ quickly approaches the δk of that mode. Unfortunately, no other general properties of κ are evident. In Fig. 7 we plot κ as a function of z for several values of the detuning Θ. The behavior of κ is unpredictable; not only does κ vary with Θ, but even for fixed Θ, κ varies dramatically with z. However, as expected, κ approaches a constant when there is a growing
mode [Fig. 7(c)]. For $\Theta = -\Theta_p$, destructive interference sharply reduces the output power at periodic values of z. At these points, the denominator of Eq. (40) approaches zero, producing a peak in κ [Fig. 7(a)]. Figure 8 shows κ as a function of the detuning Θ. Surveys of similar curves demonstrate that the only repeatable features are the peaks at the destructive detuning, and that κ approaches δk for the growing mode. In Fig. 9, we plot the total electric field at a fixed z as a function of Θ at two transverse positions. Just as in the single mode case, the fields depend strongly on the phase of the wiggler at the measurement position. The two characteristic behaviors are fields slightly larger or smaller than the unperturbed field, or fields that lead or lag the unperturbed field.

Note that the residues \mathcal{R}_i were found using one-dimensional theory and will be slightly different when three-dimensional effects are taken into account. The expansion Eq. (46) for κ may then have a term linear in z, but the effect of this term can often be expected to be negligible.

C. Nonlinear interaction field profiles

The previous sections have assumed that the FEL was operating in the linear regime, but this assumption is not fundamental. Once the one-dimensional nonlinear solution is determined by a numerical simulation, the alternate definition of the κ given in Eq. (43) can be readily applied. In Fig. 10 we show the output power, phase, and the real and imaginary parts of the composite δk-scalar from a simulation of a FEL operating at 1.5 mm wavelength with a 1.5 kA, 2.13 kV beam. The power grows exponentially, saturates at about 2.0 m and undergoes synchrotron oscillations, and the FEL induced rf phase shift grows nearly linearly. The behavior of both the real and imaginary components of κ is, however, rather complicated.

![Graph](image)

FIG. 8. The composite δk-scalar κ versus the detuning Θ. The real part of κ is given by the solid line and the imaginary part is given by the dashed line. For reference, the gain is given by the dotted line. The coupling constant is $Q = 3.56 \text{ m}^{-3}$, the normalized plasma frequency is $\Theta = 4.11 \text{ m}^{-1}$, and $z = 1.7$ m.

FIG. 9. Total electric field versus the detuning Θ. The field is plotted at (a) $z = 0.99$, (b) $z = 0.99 + l_w/4$, (c) $z = 0.99 + l_w/2$, and (d) $z = 0.99 + 3l_w/4$. The solid line is the electric field at $x = 0.26$ cm, just outside the beam, and the dashed line is the field at the wall. To the width of the lines, the field at the waveguide wall is identical to the field in the center. The coupling constant $Q = 6.39 \text{ m}^{-3}$ is adjusted to give a gain of 2 at $z = 1$ m. Other parameters are as in Fig. 3.

IV. SCALING AND SELF-CONSISTENCY

In Fig. 11, we scan the beam radius at fixed gain and plot the time averaged electric field. Since we hold the gain δk constant, the beam must be more "active" per unit area for a small beam than for a large beam, and the deformations are indeed largest for the smallest beam. This effect can be understood somewhat more quantitatively by calculating an
effective isotropic dielectric constant for the beam, as discussed in the Introduction. Since this naive model predicts that the dielectric model is inversely proportional to the beam radius squared, the edge discontinuity should likewise be inversely proportional to the beam radius squared, in rough agreement with the curves of Fig. 11.

So far we have concentrated on frequencies that are not highly overmoded. In Fig. 12, we show the time averaged electric fields for frequencies up to 90 GHz. The beam edge discontinuity remains roughly constant, reflecting the fact that the surface charge and current magnitudes are independent of the frequency, and the wiggling velocity v_w has been held fixed [Eq. (23)]. The transverse inhomogeneous fields are likewise independent of frequency. However, the space-charge wave magnitude is inversely proportional to frequency. Since the ratio of the beam radius to the waveguide radius remains fixed at 0.2, and since the radiation is constrained to be in a TE_{11}-like mode, the profile does not necessarily approach that of a standard, high-frequency, optically guided mode.

Our model assumes that the wavenumber shift resulting from the FEL interaction δk is known. The field profiles are then calculated from the resulting current profile. The model is not self-consistent since the transverse field profiles used in calculating δk do not include the influence of the FEL.
interaction. An improved estimate of the FEL growth rate could be made by iterating the present scheme—using the new field profiles to obtain a new FEL growth rate.

V. CONCLUSIONS

In this paper we study the waveguide analog of optical guiding in a free-electron laser by finding the fields produced by a bunched, undulating electron beam. The beam density modulation produces both radial and axial space-charge field components at the ponderomotive wavenumber \(k_z + k_w + \delta k \), and the coupling of the modulation and the beam undulation yields field components at wavenumbers \(k_z + \delta k \) and \(k_z + 2k_w + \delta k \). The complete transverse electric field is determined by the superposition of these field components. We show, for the parameters of a microwave FEL, that the mode profiles have a rich transverse structure. The analysis yields profiles that are strongly influenced by both the radial component of the space-charge field at wavenumber \(k_z + k_w + \delta k \) and by discontinuities at the beam boundary that arise from the surface charge and surface current terms at \(k_z + 5k \) and \(k_z + 2k_w + 5k \). (In a realistic beam with a smooth edge density profile, these discontinuities would be spread out over the beam boundary region.) Generally, the fields have profiles that, depending on the axial position relative to the phase of the wigglers, transform through eight distinct shapes. The analysis is dependent on the FEL-induced wavenumber shift \(\delta k \), which is found by solving the standard FEL cubic equation. When the gain is high, only one root of this equation is needed; however, at low gain, all three FEL modes need to be included, and an expression for a composite \(\delta k \) scalar is employed to find the three-dimensional fields. The expression for the composite \(\delta k \)-scalar is equivalent to the logarithmic derivative of the complex eikonal electromagnetic field. This alternate definition of \(\delta k \) is employed to extend the analysis to the nonlinear regime.

We find, consistent with the simple "epsilon" fiber model discussed in the Introduction, that the profile modifications at low frequencies are large. As expected, the size of the modifications decreases with the beam radius (at fixed gain). This results in a larger perturbation of the mode near the electron beam. The space-charge wave components decrease at high frequencies, but the beam edge discontinuity does not.

Experiments have measured\(^{14,15}\) the transverse field structure inside a FEL. Direct comparisons of these measurements with our theory are not possible because the experiments use a rectangular waveguide and because the probes used in the experiments are not entirely unidirectional. Nonetheless, we find some qualitative agreement between theory and the experiment. For example, the space-charge fields dominate the transverse profile modifications. The profile modifications exhibit inversion symmetry when the measurement position is shifted by half the wigglar period. Leads and lags between field amplitudes measured at different transverse positions are both predicted and observed.

ACKNOWLEDGMENTS

We acknowledge useful discussions with G. Bekafl, A. Fruchtman, F. Hartemann, E. Jerby, N. Kroll, B. Thompson, and K. Xu. Some of this work was performed at the University of California, San Diego.

This work has been supported by the National Science Foundation, the Office of Naval Research, and the U.S. Department of Energy, Office of High Energy Physics.

6H. Haus (private communication).