Single-particle analysis of the free-electron laser sideband instability for primary electromagnetic wave with constant phase and slowly varying phase

Ronald C. Davidson
Science Applications International Corporation, Boulder, Colorado 80302

Jonathan S. Wurtele
Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 3 June 1986; accepted 23 October 1986)

Use is made of the single-particle orbit equations together with Maxwell's equations and appropriate statistical averages to investigate detailed properties of the sideband instability for a helical-wiggler free-electron laser with wiggler wavelength $\lambda_0 = 2\pi/k_0 = \text{const}$ and normalized wiggle amplitude $a_w = eB_w/mc^2k_0 = \text{const}$. The model describes the nonlinear evolution of a right-circularly polarized primary electromagnetic wave with frequency ω_0, wavenumber k_0, and slowly varying amplitude $\hat{A}_t(z,t)$ and phase $\delta_t(z,t)$ (eikonal approximation). The orbit and wave equations are analyzed in the ponderomotive frame ("primed" variables) moving with velocity $u_p = \omega_0/(k_0 + k_0)$ relative to the laboratory. Detailed properties of the sideband instability are investigated for small-amplitude perturbations about a quasisteady equilibrium state characterized by $\delta^{(0)}_t = \text{const}$ (independent of z' and t'). Two cases are treated. The first case assumes constant equilibrium wave phase $\delta^{(0)}_t = \text{const}$, which requires (for self-consistency) both untrapped- and trapped-electron populations satisfying $\langle z\rangle \exp [ik_z \zeta_p(t') + i\delta^{(0)}_t]/\gamma_p = 0$. Here $k_z = (k_x + k_y)/\gamma_p$ is the wavenumber of the ponderomotive potential, $\zeta_p(t')$ is the equilibrium orbit, and $\gamma_p mc^2$ is the electron energy. The second case assumes that all of the electrons are deeply trapped, which requires a slow spatial variation of the equilibrium wave phase, $\partial\delta^{(0)}_t/\partial z' = 2\Gamma_p(\Gamma_p k_0/\Omega_p)^2 k_0 \neq 0$. The resulting dispersion relations and detailed stability properties are found to be quite different in the two cases. Both the weak-pump and strong-pump regimes are considered.

I. INTRODUCTION

There is growing experimental$^{1-18}$ and theoretical$^{19-67}$ interest in free-electron lasers (FEL's)$^{68-71}$ as effective sources for coherent radiation generation by intense relativistic electron beams. Recent theoretical studies have included investigations of nonlinear effects$^{19-42}$ and saturation mechanisms, the influence of finite geometry on linear stability properties,$^{43-48}$ novel magnetic field geometries for radiation generation,$^{43,49-53}$ and fundamental studies of stability behavior.$^{54-65}$ One topic of considerable practical interest is the sideband instability32 that results from the bounce motion of electrons trapped in the (finite-amplitude) ponderomotive potential. Both kinetic$^{19-21}$ and single-particle$^{22-42}$ models of the sideband instability have been developed, and numerical simulations$^{44-47}$ have been carried out. However, with the exception of the recent kinetic studies by Davidson et al.$^{19-21}$ the theoretical models have assumed perturbations about a finite-amplitude primary electromagnetic wave with slowly varying equilibrium phase $\delta^{(0)}_t$. By including both untrapped- and trapped-electron populations, it has been shown21 that quasisteady equilibrium solutions to the nonlinear Vlasov-Maxwell equations exist in which both the amplitude and phase of the primary electromagnetic wave are constant. Moreover, the concomitant kinetic investigations19,20 of the sideband instability for $\delta^{(0)}_t = \text{const}$ have shown that linear stability properties are qualitatively and quantitatively different from single-particle treatments of the sideband instability carried out for the case where the equilibrium wave phase $\delta^{(0)}_t$ is slowly varying. In the present analysis we use a single model to investigate detailed linear properties of the sideband instability for both cases (constant wave phase and slowly varying phase). The theoretical model (Secs. II-IV) is based on the single-particle orbit equations together with Maxwell's equations and appropriate statistical averages.29,30,32,36 In addition, the present analysis is carried out in the ponderomotive frame,$^{19-21,66,67}$ which leads to a considerable simplification in the orbit equations and detailed investigation of the sideband instability. The model assumes a tenuous, relativistic electron beam propagating through a constant-amplitude helical wiggler magnetic field with wavelength $\lambda_0 = 2\pi/k_0 = \text{const}$ and normalized amplitude $a_w = eB_w/mc^2k_0 = \text{const}$. The model also neglects longitudinal perturbations (Compton-regime approximation with $\delta \phi = 0$) and transverse spatial variations ($\partial / \partial x = 0 = \partial / \partial y$). Moreover, the analysis is carried out for the case of a finite-amplitude primary electromagnetic wave (ω_0, k_0) with right-circular polarization and slowly varying normalized amplitude $\hat{A}_t(z,t)$ and wave phase $\delta_t(z,t)$ (eikonal approximation). The orbit-Maxwell equations [Eqs. (24), (25), and (35)] are used to investigate properties of the sideband instability for small-ampli-
tude perturbations about a primary electromagnetic wave with constant amplitude $\delta_0 = \text{const}$ (independent of z' and t'). Two cases are treated. The first case (Sec. V) assumes constant equilibrium wave phase $\delta_0 = \text{const}$, which requires (for self-consistency) both untrapped- and trapped-electron populations. This is analogous to the case studied by Davidson et al.10-12 using the Vlasov–Maxwell equations. The second case (Sec. VI) assumes that all of the electrons are trapped, which requires a slow spatial variation of the equilibrium wave phase $\delta_0' = \partial z' = \partial 0$. The resulting dispersion relations and detailed stability properties are found to be quite different in the two cases.

II. THEORETICAL MODEL AND FIELD EQUATIONS

The present analysis assumes a tenuous, relativistic electron beam propagating in the z direction through a helical magnetic wigglertype field with vector potential

$$
\mathbf{A}_w(x) = \left(\frac{mc^2}{e} \right) \mathbf{a}_w(x)
$$

$$
= \left(\frac{mc^2}{e} \right) a_w \left(\cos k_0 z \hat{e}_x + \sin k_0 z \hat{e}_y \right).
$$

Here $-e$ is the electron charge, mc^2 is the electron rest energy, $\lambda_0 = 2\pi/k_0 = \text{const}$ is the wigglertype wavelength, the wigglertype magnetic field is $\mathbf{B}_w = \nabla \times \mathbf{A}_w$, and $a_w = eB_w/mc^2k_0$ is the normalized wigglertype amplitude. Transverse spatial variations are neglected ($\partial/\partial x = 0 = \partial/\partial y$), and it is assumed that the beam density and current are sufficiently low that the equilibrium self-fields associated with the space charge and axial current of the electron beam are negligibly small. Moreover, longitudinal perturbations are neglected in the stability analysis (Compton-regime approximation with $\delta \phi = 0$). In addition to the static wigglertype field in Eq. (1), it is assumed that a primary electromagnetic wave signal with right-circular polarization has developed with vector potential

$$
\mathbf{A}_s(x,t) = \left(\frac{mc^2}{e} \right) \mathbf{a}_s(x,t)
$$

$$
= \left(\frac{mc^2}{e} \right) \hat{e}_x \left\{ \cos \left[k_0 z - \omega_s t + \delta_s(z,t) \right] \right\} \hat{e}_x
$$

$$
- \sin \left[k_0 z - \omega_s t + \delta_s(z,t) \right] \hat{e}_y,
$$

(2)

where ω_s and k_s are the frequency and wavenumber, respectively. Here the wave amplitude $\hat{a}_s(z,t)$ and phase shift $\delta_s(z,t)$ are treated as slowly varying, and the corresponding electromagnetic fields are given by $\mathbf{B}_s = \nabla \times \mathbf{A}_s$, and $\mathbf{E}_s = - (1/c) \partial \mathbf{A}_s/\partial t$. The amplitude $\hat{a}_s(z,t)$ in Eq. (2) is related to the magnetic field amplitude $B(z,t)$ of the primary electromagnetic wave by $\hat{a}_s = eB_s/mc^2k_s$. In the present analysis, it is assumed that the primary electromagnetic wave in Eq. (2) has evolved to finite amplitude following a phase of linear FEL instability. Moreover, although the (dimensionless) amplitude \hat{a}_s is treated as finite, it should be noted that $\hat{a}_s \ll 1$ in the regimes of practical interest.

A detailed investigation of the sideband instability simplifies considerably if the analysis is carried out in the ponderomotive frame (also known as the Bambini–Renieri frame66 moving with velocity $v_p = \omega_s/(k_s + k_0)$)

$$
v_p = \omega_s/(k_s + k_0).
$$

(3)

Therefore, the subsequent analysis is carried out in ponderomotive-frame variables (z',t',γ') defined by the Lorentz transformation

$$
z' = \gamma_p (z - v_p t), \quad t' = \gamma_p (t - v_p z/c^2),
$$

$$
\gamma' = \gamma_p (1 - v_p z/c^2),
$$

(4)

where

$$
\gamma_p = \left(1 - v_p^2/c^2 \right)^{-1/2},
$$

$$
\gamma_p m c^2 = \left(m c^2 + c^2 p_x^2 + c^2 p_y^2 + c^2 p_z^2 \right)^{1/2}
$$

is the mechanical energy, and the components of momentum (p_x', p_y', p_z') are related to the velocity $\mathbf{v}' = dx'/dt'$ by $\mathbf{p}' = \gamma' m \mathbf{v}'$. We introduce the complex representation of the vector potentials defined by

$$
a_w(z) = a_{w_0}(z) - i a_{w_0}(z),
$$

$$
a_s(z,t) = a_{s_0}(z,t) - i a_{s_0}(z,t).
$$

(5)

Making use of Eqs. (1) and (2) and the inverse transformation $z = \gamma_p (z' + v_p t')$ and $t = \gamma_p (t' + v_p z'/c^2)$, it is readily shown that

$$
a_w(z',t') = - a_{w_0} \exp \left\{ - i \gamma_p k_0 (z' + v_p t') \right\},
$$

$$
a_s(z',t') = a_{s_0}(z',t') \exp \left\{ i \left(k' z' - \omega_s t' \right) + i \delta_s(z',t') \right\},
$$

(6)

in ponderomotive-frame variables. Here (ω', k') in the ponderomotive frame is related to (ω_s, k_s) in the laboratory frame by

$$
\omega' = \gamma_p \omega_s - k_0 v_p, \quad k' = \gamma_p (k_s - \omega_s v_p/c^2).
$$

(7)

In general, we also allow for additional wave components with right-circular polarization. The corresponding complex vector potential $a^-(z',t') = a_s(z',t') - i a_s(z',t')$ can then be expressed as

$$
a^-(z',t') = \sum_k \hat{a}_s(k',t') \times \exp \left\{ i \left(k' z' - \omega_s t' \right) + i \delta_s(k',t') \right\},
$$

(8)

where (ω', k') in the ponderomotive frame is related to (ω_s, k_s) in the laboratory frame by

$$
\omega' = \gamma_p (\omega - k v_p), \quad k' = \gamma_p (k_s - \omega v_p/c^2).
$$

(9)

Here $k' = 2\pi n'/L'$, where L' is the fundamental periodicity length in the ponderomotive frame, and the summation Σ_k extends from $n' = - \infty$ to $n' = \infty$. Without loss of generality, we take $L' = 2\pi k_0$, where $k_0 = (k_0 + k_0)/\gamma_p$. Comparing Eqs. (6) and (8), it is evident that the primary electromagnetic wave (ω', k') corresponds to one particular wave component in Eq. (8) with $(\omega', k') = (\omega_s, k_s)$. For future reference, Eq. (8) can also be expressed as

$$
a^-(z',t') = \sum_k a_s(k',t') \exp \left\{ i \left(k' z' - \omega_s t' \right) \right\},
$$

(10)

where the complex amplitude $a_s(k',t')$ is defined by

$$
a_s(k',t') = a_s(k',t') \exp \left\{ i \delta_s(k',t') \right\}.
$$

(11)

We denote the axial position and energy of the jth electron in the ponderomotive frame by $z_j(t')$ and $\gamma_j(t')$. In addition, it is assumed that all electrons move on surfaces with zero transverse canonical momentum, i.e., $P_{jx} = 0 = P_{jy}$. This gives for the transverse velocities $v_{jx} = p_{jx}/\gamma_j$ and $v_{jy} = p_{jy}/\gamma_j$,

$$
v_{jx} = (c/\gamma_j) \left\{ a_{w_0}(z_j, t') + a_s(z_j, t') \right\},
$$

$$
v_{jy} = (c/\gamma_j) \left\{ a_{w_0}(z_j, t') + a_s(z_j, t') \right\}.
$$

(12)
Making use of Eqs. (6), (10), and (12), it is straightforward to show that the microscopic current \(J_{\text{m}} (z', t') = J_{\text{m}} (z', t') - i J_{\text{ph}} (z', t') \) can be expressed as

\[
J_{\text{m}} (z', t') = -e \sum_j \left(\nu_{j+} - \nu_{j-} \right) \delta [z' - z'_j(t')]
\]

\[
- e c \sum_j \left(\nu_{j+} \exp[i \nu_{j} k_0 (z' + v_p t')] + \sum \alpha_k (z', t') \exp [i (k' z' - \omega' t')]
\]

\[
\times \delta [z' - z'_j(t')],
\]

(13)

where \(\sum \) denotes summation over electrons. For future reference, we also simplify the expression for

\[
\gamma_j = \left(1 + \frac{p_j^2}{m^2 c^2} + \frac{p_j^2}{m'^2 c^2} + \frac{p_j^2}{m'^2 c^2} \right)^{1/2},
\]

where \(p_j = \gamma_j m v_j \) and \(p_j = \gamma_j m v_j' \) are defined in Eq. (12).

Some straightforward algebra that makes use of Eqs. (6), (10), and (12) gives

\[
\gamma_j^2 = 1 + \frac{p_j^2}{m c^2} + \alpha_w + \sum k \left| \alpha_k \right|^2
\]

\[
- 2 \alpha_w \text{Re} \left(\sum_k \alpha_k \exp(i \theta_j) \right).
\]

(14)

Here the orbital phase factor \(\theta_j(t') \) is defined by

\[
\theta_j(t') = (k' + \gamma_j k_0) z'_j(t') - (\omega' - \gamma_j k_0 v_p) t'.
\]

(15)

In the regimes of practical interest, \(\alpha_w \) is order unity, and \(|\alpha_k| < 1 \) for the electromagnetic wave components. Therefore an excellent approximation to Eq. (14) is

\[
\gamma_j^2 = 1 + \frac{p_j^2}{m^2 c^2} + \alpha_w - 2 \alpha_w \text{Re} \left(\sum_k \alpha_k \exp(i \theta_j) \right).
\]

(16)

where \(\alpha_k = \alpha \exp(i \delta_k) \) is the complex wave amplitude. In Sec. III we will make use of the form of \(\gamma_j \) in Eq. (16) to investigate the equations of motion in the ponderomotive frame.

In the ponderomotive frame, Maxwell's equations for the complex vector potential \(a^-(z', t') = a_z (z', t') - i a_p (z', t') \) associated with the average electromagnetic fields can be expressed as

\[
\left(\frac{1}{c^2} \frac{\partial^2}{\partial t'^2} - \frac{\partial}{\partial z'} \right) a^-(z', t')
\]

\[
= - \frac{4 \pi e^2}{mc^2} \left(\sum_j \left(\nu_{j+} - \nu_{j-} \right) \delta [z' - z'_j(t')],
\]

(17)

where \(\langle \cdots \rangle \) denotes ensemble average. Making use of Eqs. (10) and (13), it follows that Eq. (17) can be expressed in the equivalent form:

\[
\sum_k \left[\left(- \frac{\omega'^2}{c^2} + k^2 \right) a_k + \left(\frac{1}{c^2} \frac{\partial^2 a_k}{\partial t'^2} - \frac{2 \omega'}{c^2} \left(\frac{\partial a_k}{\partial t'} + \frac{c^2 k \partial a_k}{\omega} \frac{\partial}{\partial z'} \right) \right] \delta [z' - z'_j(t')]
\]

\[
= - \frac{4 \pi e^2}{mc^2} \sum_j \left(\sum_k \left[\frac{1}{c^2} \frac{\partial a_k}{\partial t'} + \frac{c^2 k \partial a_k}{\omega} \frac{\partial}{\partial z'} \right] \delta [z' - z'_j(t')] \right)
\]

\[
+ \frac{4 \pi e^2 \alpha_w}{mc^2} \left(\sum_k \left[\frac{1}{c^2} \frac{\partial a_k}{\partial t'} + \frac{c^2 k \partial a_k}{\omega} \frac{\partial}{\partial z'} \right] \delta [z' - z'_j(t')] \right).
\]

(18)

Consistent with the assumption that the amplitudes \(a_k \) are slowly varying with \(z' \) and \(t' \), we neglect the second-derivative contributions with respect to \(z' \) and \(t' \) in Eq. (18) but retain the terms proportional to \(\partial a_k / \partial t' \) and \(\partial a_k / \partial z' \) (eikonal approximation). Furthermore, we operate on Eq. (18) with \(J_{\text{ph}} (z' \partial / L') \exp (- i \nu' z' + i \omega' t') \cdots \), where \(L' \) is the fundamental periodicity length for the (fast) spatial oscillations in the ponderomotive frame. Treating the spatial variation of \(a_k \) and \(\gamma_j \) as slow, the wave equation (18) then gives

\[
\left[\left(- \frac{\omega'^2}{c^2} + k^2 \right) + \frac{4 \pi e^2}{mc^2} \frac{1}{L'} \left(\sum \frac{1}{\nu'_j} \right) \right] a_k
\]

\[
- \frac{2 \omega'}{c^2} \left(\frac{\partial a_k}{\partial t'} + \frac{k c^2 \partial a_k}{\omega} \frac{\partial}{\partial z'} \right)
\]

\[
= \frac{4 \pi e^2 \alpha_w}{mc^2} \frac{1}{L'} \left(\sum \frac{1}{\nu'_j} \exp(-i \theta_j) \right)
\]

(19)

for the evolution of the \(k \) 'th Fourier component. Here \(\theta_j = (k' + \gamma_j k) z'_j(t') - (\omega' - \gamma_j k_0 v_p) t' \) is the orbital phase defined in Eq. (15).

Separating Eq. (19) into fast and slow contributions gives

\[
\omega'^2 = c^2 k^2 + \frac{4 \pi e^2}{m} \frac{1}{L'} \left(\sum \frac{1}{\nu'_j} \right)
\]

(20)

and

\[
\frac{2 \omega'}{c^2} \left(\frac{\partial a_k}{\partial t'} + \frac{k c^2 \partial a_k}{\omega} \frac{\partial}{\partial z'} \right)
\]

\[
= - \frac{4 \pi e^2 \alpha_w}{mc^2} \frac{1}{L'} \left(\sum \frac{1}{\nu'_j} \exp(-i \theta_j) \right)
\]

(21)

Equation (20) determines the real oscillation frequency \(\omega' \) in terms of \(k' \) and beam dielectric effects (proportional to \(\langle \Sigma_{j} 1/\nu'_j \rangle \)). On the other hand, Eq. (21) describes the (slow) evolution of the complex amplitude \(a_k (z', t') \) induced by the wiggler field \(\alpha_w \). Expressing \(a_k = \alpha_k \exp(i \delta_k) \), the wave equation (21) can be separated into real and imaginary parts. This gives separate equations for the evolution of \(\alpha_k (z', t') \) and \(\delta_k (z', t') \), i.e.,
\[2 \omega' \left(\frac{\partial}{\partial t'} + k_x' c^2 \frac{\partial}{\partial z'} \right) \delta_{k_x} = \frac{4 \pi e^2 a_w}{m} \frac{1}{L'} \left(\sum \frac{\sin(\theta_{j'} + \delta_{k_x})}{\gamma_{j'}} \right), \tag{22}\]
\[2 \omega' \frac{\partial \delta_{k_x}}{\partial t'} + k_x' c^2 \frac{\partial}{\partial z'} \delta_{k_x} = \frac{4 \pi e^2 a_w}{m} \frac{1}{L'} \left(\sum \frac{\cos(\theta_{j'} + \delta_{k_x})}{\gamma_{j'}} \right). \tag{23}\]

Equations (22) and (23) are fully equivalent to the (complex) wave equation (21).

We summarize here several noteworthy points regarding the wave equations (22) and (23) (or, equivalently, Eq. (21)).

(a) First, the orbits \(z_{j'}(t')\) and \(\gamma_{j'}(t')\) occurring in Eqs. (22) and (23) are determined self-consistently in terms of the wiggler and electromagnetic fields (Sec. III). Therefore, generally speaking, Eqs. (22) and (23) are nonlinear equations for the evolution of \(\delta_{k_x}\) and \(\delta_{k_y}\). Indeed, Eqs. (22) and (23), together with the dynamical equations for \(z_{j'}(t')\) and \(\gamma_{j'}(t')\), can form the basis for numerical simulations of the nonlinear evolution of the wave spectrum and the sideband instability.

(b) Second, for \((\omega', k_x') = (\omega'_k, k_x')\), Eqs. (22) and (23) describe the evolution of the primary electromagnetic wave \((\delta_{k_x}, \delta_{k_y})\). In particular, \(\delta_{k_x}(z', t')\) and \(\delta_{k_y}(z', t')\) evolve according to

\[2 \omega' \left(\frac{\partial}{\partial t'} + k_x' c^2 \frac{\partial}{\partial z'} \right) \delta_{k_x} = \frac{4 \pi e^2 a_w}{m} \frac{1}{L'} \left(\sum \frac{\sin(\theta_{j'} + \delta_{k_x})}{\gamma_{j'}} \right), \tag{24}\]
\[2 \omega' \delta_{k_x} \left(\frac{\partial}{\partial t'} + k_x' c^2 \frac{\partial}{\partial z'} \right) \delta_{k_y} = \frac{4 \pi e^2 a_w}{m} \frac{1}{L'} \left(\sum \frac{\cos(\theta_{j'} + \delta_{k_x})}{\gamma_{j'}} \right), \tag{25}\]

where \((\omega'_k, k_x')\) solves Eq. (20), and \(\theta_{j'}\) is defined by

\[\theta_{j'} = k_x' z_{j'}(t'). \tag{26}\]

Here, use has been made of

\[\omega' - \gamma_p k_x v_x = \gamma_p [\omega_x - (k_x + k_0) v_x] = 0, \]
and \(k_x'\) is defined by \(k_x' = (k_x + \gamma_p k_0)/\gamma_p\).

(c) If, in addition, there are secondary electromagnetic wave components \((\delta_{k_x'}, \delta_{k_y'})\) with frequency and wavenumber \((\omega_x', k_x')\) different from \((\omega_x', k_x')\), then \(\delta_{k_x'}(z', t')\) and \(\delta_{k_y'}(z', t')\) evolve according to Eqs. (22) and (23), where \((\omega_x', k_x')\) solves Eq. (20) and \(\theta_{j'} = (k_x' + \gamma_p k_0) z_{j'}(t') - (\omega_x' - \gamma_p k_0 v_x) t'\) is defined in Eq. (15).

(d) Finally, there is some latitude in specifying the precise operational meaning of the statistical averages \(\langle \Sigma_{j'} \cdots \rangle\) occurring in the wave equations (22) and (23). For present purposes, let us assume that the orbits \(z_{j'}(t')\) and \(\gamma_{j'}(t')\) have been calculated in terms of the initial values \(z_{j'}(0)\) and \(\gamma_{j'}(0)\). Then the simplest definition of the statistical average \(\langle \Sigma_{j'} \cdots \rangle\) over some phase function \(\psi(\theta_{j'}(0), \gamma_{j'}(0))\) is given by

\[\frac{1}{L'} \left(\sum \psi(\theta_{j'}(0), \gamma_{j'}(0)) \right) = h_0 \int_0^{2 \pi} \frac{d \theta_0}{2 \pi} \int_0^\infty dy_0 G(\theta_0, \gamma_0) \psi(\theta_0, \gamma_0). \tag{27}\]

Here \(h_0\) is the average density of the beam electrons in the ponderomotive frame and \(G(\theta_0, \gamma_0)\) is the (probability) distribution of electrons in initial phase \(\theta_0\) and energy \(\gamma_0\).

III. PARTICLE ORBIT EQUATIONS

We now obtain the orbit equations for \(z_{j'}(t')\) and \(\gamma_{j'}(t')\).

In the ponderomotive frame, the equation of motion of \(p_{j'}(t') = \gamma_{j'}(t') m dz_{j'}/dt'\) is

\[\frac{d}{dt'} p_{j'} = -mc^2 \frac{\partial}{\partial z_{j'}} \gamma_{j'}. \tag{28}\]

Here, to the level of accuracy required in the present analysis, \(\gamma_{j'}\) is defined in terms of \(p_{j'}\) and field quantities by Eq. (16). Neglecting the variation of \(a_{k_x}(z_{j'}, t')\) with respect to \(z_{j'}\) in comparison with \(\partial \theta_{j'}/\partial z_{j'} = (k_x' + \gamma_p k_0)\), it readily follows from Eqs. (16) and (28) that \(z_{j'}(t')\) evolves according to

\[\frac{d^2 z_{j'}}{dt'^2} + \frac{1}{\gamma_{j'}} \frac{dz_{j'}}{dt'} = \frac{c^2 a_w}{\gamma_{j'}^2} \left(\sum_{k_x} (k_x' + \gamma_p k_0) a_{k_x} \exp(i\theta_{j'}) \right). \tag{29}\]

where \(a_{k_x} = a_{k_x} \exp(i\delta_{k_x})\), and \(\theta_{j'} = (k_x' + \gamma_p k_0) z_{j'} - (\omega_x' - \gamma_p k_0 v_x) t'\). In Eq. (29) the summation \(\Sigma_{k_x}\) includes the primary electromagnetic waves \((\omega_x', k_x')\) as well as other electromagnetic wave components.

With regard to the evolution of \(\gamma_{j'}(t')\), we make use of

\[\frac{d}{dt'} \gamma_{j'} = \frac{-e}{mc} v_{j'E} \gamma_{j'} = \frac{1}{2 \gamma_{j'}^2} \frac{\partial}{\partial t'} \left[\left(a_{xw}(z_{j'}, t') + a_x(z_{j'}, t') \right)^2 \right. \]
\[+ \left(a_{xw}(z_{j'}, t') + a_x(z_{j'}, t') \right)^2, \tag{30}\]

where \((a_{xw}, a_x)\) denotes the vector potential for the wiggler field [Eq. (6)], and \((a_{xw}, a_x)\) denotes the vector potential for the electromagnetic wave contributions [Eq. (8)]. In obtaining Eq. (30), use has been made of Eq. (12) to express the perpendicular velocity \((v_{xw}, v_x)\) in terms of fields quantities. Substituting Eqs. (6) and (8) into Eq. (30) and making use of \(a_{xw} = \text{const}\) gives

\[\frac{d}{dt'} \gamma_{j'} = \frac{1}{2 \gamma_{j'}^2} \frac{\partial}{\partial t'} \left(\sum_{k_x} |\delta_{k_x}|^2 - 2 a_{xw} \text{Re} \left[a_{k_x} \exp(i\theta_{j'}) \right] \right), \tag{31}\]

where \(a_{k_x} = \delta_{k_x} \exp(i\delta_{k_x})\). Neglecting \(|\delta_{k_x}|^2\) in comparison with \(2 a_{xw} a_{k_x}\), in Eq. (31), and treating \(a_{k_x}(z_{j'}, t')\) as slowly varying with respect to \(t'\) in comparison with
\[\frac{\partial \theta'_j/\partial t'}{\partial \theta_j} = -(\omega' - \gamma'_p k_0 v_p) \],

it is straightforward to show that Eq. (31) can be approximated by

\[\frac{d}{dt} \gamma'_j = -\frac{a_w}{\gamma'_j} \text{Im} \left[\sum_k \left(e^{i \theta_j} \gamma'_p (k' + \gamma'_p k_0) \right) \right], \]

where \(\theta'_j = (k' + \gamma'_p k_0)z_j - (\omega' - \gamma'_p k_0 v_p) \). Equation (32) can be used to eliminate \(d\gamma'_j/dt \) in the equation of motion for \(z_j(t') \) in Eq. (29). This readily gives

\[\frac{d^2}{dt^2} z'_j = -\frac{c^2 a_w k_0}{\gamma'_j^3} \text{Im} \left[\sum_k \left((k' + \gamma'_p k_0) \right) \right] \frac{d\gamma'_j}{dt} \left[e^{i \theta_j} \right]. \]

Equations (32) and (33) are the final equations of motion used in the present analysis. Note that Eqs. (32) and (33) generally allow for several wave components. Moreover, it should be kept in mind that the slow variation of \(a_j(z', t') \) with respect to \(z' \) and \(t' \) has been neglected in deriving Eqs. (32) and (33). For future reference, we now specialize to the case where there is a single wave component \((\omega'_s k'_s)\) corresponding to the primary electromagnetic wave \((\delta_s, \delta'_s)\). Making use of \(\omega'_s = \gamma'_p (\omega_s - k_s v_p) \)

\[\gamma'_p k_0 v_p \]

is readily shown that Eqs. (32) and (33) reduce to

\[\frac{d}{dt} \gamma'_s = 0, \]

for the case of a single wave component \((\omega'_s k'_s)\). Here \(\theta'_s = k'_s z'_s(t') \). To the level of accuracy that neglects \(d\gamma'/dt \) in Eq. (31), we note from Eq. (34) that energy is conserved in the ponderomotive frame \((\gamma'_s = \text{const})\). The concomitant simplification in the particle orbits and related analysis is the primary motivation for carrying out the present investigations in the ponderomotive frame.19-21,66,67

IV. SIDEBAND INSTABILITY—MODEL AND DEFINITIONS

Assuming a single electromagnetic wave component \((\omega'_s k'_s)\), in Secs. V and VI we make use of the coupled equations for \(\delta_s(t', t') \) [Eq. (24)], \(\delta'_s(t', t') \) [Eq. (25)], and \(\theta'_s(t') \) [Eq. (35)] to investigate detailed properties of the sideband instability in circumstances where the electrons are deeply trapped in the ponderomotive potential. In particular, we examine linear stability properties for small-amplitude perturbations \((\delta \delta'_s)\) about a finite-amplitude state \((\delta'_s, \delta'_s)\). In this regard, two cases are distinguished:

(a) Perturbations about a primary electromagnetic wave equilibrium with constant phase \(\delta'_0 \) and constant amplitude \(\delta'_0 \) \((\partial / \partial t') = 0 = \partial / \partial \delta'\). Previous kinetic studies of the sideband instability based on the Vlasov–Maxwell equations have shown that both trapped and untrapped electrons are required for such an equilibrium state to exist.

(b) Perturbations about a quasisteady primary electromagnetic wave with phase \(\delta'_0 \), which is slowly varying with \(t' \). Previous analytical studies of the sideband instability based on single-particle models have emphasized this case, assuming that all of the electrons are trapped, or that the untrapped electrons play no role in sustaining the primary electromagnetic wave.

The sideband instability is investigated for cases (a) and (b) in Secs. V and VI, respectively. The analysis shows that detailed stability properties differ substantially in the two cases (e.g., the scaling of the growth rate with beam current, primary wave amplitude, etc.). This difference is clearly associated with the assumptions regarding the equilibrium state and the role of the untrapped electrons.

Although the beam dispersion relation (20) incorporates beam dielectric effects through the term \((4\pi e^2/mL')(\Sigma \gamma_j^{-1})\), for present purposes we assume a very tenuous electron beam, and Eq. (20) is approximated by the vacuum dispersion relation \(\omega_s^2 = c^2 k_s^2 \) for the primary electromagnetic wave. Assuming a forward-moving electromagnetic wave, we solve the simultaneous resonance conditions

\[\omega_s = +ck_s, \quad \omega'_s = (k_s + k_0) v_p, \]

for \(\omega_s \) and \(k_s \). This readily gives the familiar results

\[\omega_s = \gamma'_p (1 + \frac{v_p}{c}) k_0 v_p, \]

where \(\omega'_s = (1 - \frac{v_p}{c})^{-1/2} \) and \(v_p = \omega_s/(k_s + k_0) \) is (nearly) synchronous with the average axial velocity \(v_p \) of the beam electrons. Moreover, from Eq. (37), the ponderomotive wavenumber \(k'_p = (k_s + k_0)/\gamma'_p \) can be expressed as

\[k'_p = \gamma'_p (1 + \frac{v_p}{c}) k_0. \]

For future reference, we introduce the small dimensionless parameter \(\Gamma_0^- \) and the bounce frequency \(\hat{\omega}_b (\gamma'_s) \) of the trapped electrons defined by

\[\Gamma_0^- = \frac{1}{4} \frac{\omega^2}{\hat{\omega}^2} \left(\frac{1 + \nu_p}{v_p/c} \right) \ll 1, \]

where \(\hat{\omega}_b (\gamma'_s) = (c^2 k'_s^2 a_w^- \delta'_s^2 / \gamma'_p^2)^{1/2} \).

In Eq. (39), the characteristic energy \(\gamma'_s \) of an electron trapped in the ponderomotive potential is given approximately by

\[\gamma'_s = (1 + a_w^2)^{1/2}. \]

[See Eq. (14) with \(p' = 0 \) and \(|a'_s| \leq a_w. \) Moreover, \(\omega^2 = 4\pi e^2/m = 4\pi e^2/c^2 \) is the plasma frequency squared of the trapped electrons, and \(\Gamma_0^- \) is the average density in the ponderomotive frame. In Eq. (40), \(\hat{\omega}_b (\gamma'_s) \) is the bounce frequency (in the ponderomotive frame) of an electron with energy \(\gamma'_s \) trapped near the bottom of the ponderomotive potential. For \(\gamma'_s = \gamma'_p \), the bounce frequency \(\Omega_b \) in the laboratory frame is defined by

\[\Omega_b = \hat{\omega}_b (\gamma'_s) / \gamma'_p = (c^2 k'_s^2 a_w^- \delta'_s^2 / \gamma'_p^2)^{1/2} = (1 + v_p/c) [a_w^- \delta'_s^2 / (1 + a_w^2)]^{1/2} \]

R. C. Davidson and J. S. Wurtele

561
for deeply trapped electrons. In Eq. (42), \(k' \) and \(\gamma' \) have been approximated by

\[
k_p' = \frac{k_p + k_0}{\gamma_p} = \frac{\gamma_p (1 + v_p/c)k_0}{\gamma_p}
\]

and \(\gamma' = (1 + a_w'^2)^{1/2} \) for a tenuous electron beam.

V. SIDEBAND INSTABILITY FOR PRIMARY ELECTROMAGNETIC WAVE WITH CONSTANT PHASE AND AMPLITUDE

We now make use of Eqs. (24), (25), and (35) to investigate detailed properties of the sideband instability for small-amplitude perturbations about a primary electromagnetic wave with constant amplitude \(\bar{a}_0 \) and phase \(\theta_0 \). Each quantity is expressed as its equilibrium value plus a perturbation, i.e.,

\[
\bar{a}_s = \bar{a}_s^\theta + \delta \bar{a}_s, \quad \bar{\theta}_s = \bar{\theta}_s^\theta + \delta \bar{\theta}_s, \quad \theta_\mu = \theta_\mu^0 + \delta \theta_\mu,
\]

where \(\theta_\mu^0 (t') = k_p x_\mu^0 (t') \) and \(\delta \theta_\mu (t') = k_p \delta x_\mu (t') \). In the ponderomotive frame, \(\gamma'_\mu = \text{const} \) follows from Eq. (34) to the level of accuracy in the present analysis.

A. Equilibrium model

Making use of Eqs. (24) and (25), it follows that \(\bar{a}_s^0 \) and \(\delta \bar{a}_s^0 \) generally evolve according to

\[
2 \omega_1 \left(\frac{\partial}{\partial t'} + \frac{k_p'^2}{\omega_1^2} \frac{\partial}{\partial \bar{\theta}} \right) \bar{a}_s^0 = \frac{4 \pi e^2 a_w}{m} \frac{1}{L' t'} \left(\sum \sin (\theta_\mu^0 + \delta \theta_\mu) \gamma'_\mu \right),
\]

\[
2 \omega_1 \frac{\partial \delta \bar{a}_s^0}{\partial t'} + \frac{k_p'^2}{\omega_1^2} \frac{\partial}{\partial \bar{\theta}} \delta \bar{a}_s^0 = \frac{4 \pi e^2 a_w}{m} \frac{1}{L' t'} \left(\sum \cos (\theta_\mu^0 + \delta \theta_\mu) \gamma'_\mu \right).
\]

Moreover, \(\theta_\mu^0 (t') = k_p x_\mu^0 (t') \) solves Eq. (35) with all perturbations set equal to zero, i.e., \(\delta \theta_\mu = 0, \delta \bar{\theta}_s = 0 \). That is, \(\theta_\mu^0 (t') \) solves the pendulum equation

\[
2 \frac{d^2}{dt'^2} \theta_\mu^0 + \bar{a}_s^0 (\gamma'_\mu) \sin (\theta_\mu^0 + \delta \theta_\mu) = 0,
\]

where \(\bar{a}_s^0 (\gamma'_\mu) = (c^2 k_p^2 a_w \bar{a}_s^0 / \gamma'_\mu)^{1/2} \) is the bounce frequency of electrons trapped near the bottom of the ponderomotive potential.

If \(\delta \bar{a}_s^0 \) and \(\bar{a}_s^0 \) are initially constant (independent of \(x' \) and \(t' \) at \(t' = 0 \)), then it follows from Eqs. (44) and (45) that \(\delta \bar{a}_s^0 = \text{const}, \gamma'_\mu = \text{const} \)

\[
\left(\sum \frac{\sin (\theta_\mu^0 + \delta \theta_\mu)}{\gamma'_\mu} \right) = 0 = \left(\sum \frac{\cos (\theta_\mu^0 + \delta \theta_\mu)}{\gamma'_\mu} \right).
\]

To satisfy Eq. (48) necessarily requires that the distribution of beam electrons have both untrapped- and trapped-electron components. For example, the condition \(\sum \gamma'_\mu^{-1} \cos (\theta_\mu^0 + \delta \theta_\mu) = 0 \) cannot be satisfied if all of the electrons are deeply trapped with \(\theta_\mu^0 + \delta \theta_\mu \approx 0 \). We also note that Eqs. (47) and (48) are analogous to the equilibrium constraints assumed by Davidson et al. in recent kinetic studies of the sideband instability.

Without loss of generality, in the remainder of Sec. V we take \(\delta \bar{a}_s^0 = 0 \) and rewrite Eq. (48) in the equivalent form

\[
\frac{1}{L' t'} \left(\sum \exp (-i \theta_\mu^0 / \gamma'_\mu) \right) = 0.
\]

For \(\delta \bar{a}_s^0 = 0 \) and \(\bar{a}_s^0 = \text{const} \), the equilibrium orbit equation (46) can be expressed as

\[
\frac{d^2}{dt'^2} \theta_\mu^0 + \bar{a}_s^0 (\gamma'_\mu) \sin (\theta_\mu^0 + \delta \theta_\mu) = 0,
\]

where \(\bar{a}_s^0 (\gamma'_\mu) = (c^2 k_p^2 a_w \bar{a}_s^0 / \gamma'_\mu)^{1/2} = \text{const} \). A detailed analysis of Eq. (50) shows that the electron motion is untrapped for energies \(\gamma'_\mu \) satisfying (Fig. 1)

\[
\gamma'_\mu > \gamma'_+ \equiv \left[1 + (a_w + \bar{a}_s^0)^2 \right]^{1/2}.
\]

(Here \(a_w > 0 \) and \(\bar{a}_s^0 > 0 \) have been assumed without loss of generality.) That is, when Eq. (51) is satisfied, the particle motion is modulated by the ponderomotive potential, but the normalized velocity \(d \theta_\mu^0 / dt' \) does not change polarity (Fig. 1). On the other hand, for \(\gamma'_\mu < \gamma'_+ \), the electrons are trapped, and the motion described by Eq. (50) is cyclic, corresponding to periodic motion in the ponderomotive potential. From Eq. (50) it is readily shown that the minimum allowable energy of a trapped electron is

\[
\gamma'_- \equiv \left[1 + (a_w + \bar{a}_s^0)^2 \right]^{1/2}.
\]

Because \(\bar{a}_s^0 = a_w \) in the regime of practical interest, we note from Eqs. (51) and (52) that the characteristic energy of a trapped electron is approximately \(\gamma'_- \equiv (1 + a_w^2)^{1/2} \) [Eq. (41)].

B. Linearized equations

We now investigate stability properties for small-amplitude perturbations about the equilibrium state described by Eqs. (47), (49), and (50). In this regard, it is convenient to work directly with Eq. (21) for the evolution of the complex amplitude \(a_s = \bar{a}_s \exp (i \delta \gamma) \). Expressing \(a_s = \bar{a}_s^0 + \delta a_s \) and \(\theta'_\mu = \theta_\mu^0 + \delta \theta_\mu, \) Eq. (21) gives

\[
2 \omega_1 \left(\frac{\partial}{\partial t'} + \frac{c k_p'}{\omega_1} \frac{\partial}{\partial \bar{\theta}} \right) (\bar{a}_s^0 + \delta a_s) = -4 \pi e^2 a_w \frac{1}{m} \frac{1}{L' t'} \left(\sum \exp (-i \theta_\mu^0 / \gamma'_\mu - i \delta \theta_\mu / \gamma'_\mu) \right).
\]
Making use of $a_0^2 = \text{const}$ [Eq. (47)] and $(2 \text{J}_1 \exp(-i \theta_0^0) / \gamma_j^0) = 0$ [Eq. (49)], and Taylor expanding $\exp(-i \theta_0 t') = (1 - i \theta_0^0) t'$ on the right-hand side of Eq. (53), we obtain

$$2a_0^2 \left(\frac{\partial}{\partial t'} + \frac{c^2 k_{1}^2}{\omega_1^2} \frac{\partial}{\partial x'} \right) \delta a_x = \frac{4 \pi \varepsilon_0^2}{m} \frac{1}{L'} \sum_j \exp(-i \theta_0^0) \frac{\delta \psi_j}{\gamma_j^0} \left(\sum_{\gamma_j^0} \right)$$

(54)

for the evolution of the complex amplitude δa_x. Here $\delta a_x = \delta a_x + i \delta a^*_x$ for small-amplitude perturbations, where $a_0^2 = 0$ is assumed. In Eq. (54) the perturbed orbit $\delta \psi_j t' = k_j^2 \delta z_j t'$ is calculated from Eq. (35). Linearizing Eq. (35) about the equilibrium orbit equation (50) readily gives

$$\frac{d^2}{dt^2} \delta \psi_j + \omega_j^2(\gamma_j^0) \cos(\theta_j^0) \delta \psi_j = - \left(c^2 k_{1}^2 a_w^2 / \gamma_j^0 \right) \left(i \delta a_x \exp(i \theta_0^0) \right)$$

(55)

Here $\theta_j^0(\gamma_j^0)$ solves Eq. (50), and Eq. (55) is generally valid for both untrapped and trapped electrons.

Equations (54) and (55) constitute coupled linearized equations for the complex amplitude δa_x and perturbed orbit $\delta \psi_j$. For present purposes, it is useful to express

$$\delta \theta_j^0 = \delta \psi_j \exp(i \theta_j^0) + \delta \psi_j^* \exp(-i \theta_j^0),$$

(56)

where $\delta \psi_j^*$ denotes the complex conjugate of $\delta \psi_j$. Making use of Eqs. (50), (55), and (56), it is readily shown that $\delta \psi_j^0(t')$ evolves according to

$$\frac{d^2}{dt^2} \delta \psi_j^0 + 2i \left(\frac{d \theta_j^0}{dt'} \right) \frac{d}{dt'} \delta \psi_j^0 + \left[\delta \psi_j^0(\gamma_j^0) \cos(\theta_j^0) - i \delta \psi_j^0(\gamma_j^0) \sin(\theta_j^0) \right] \delta \psi_j^0 = - \left(c^2 k_{1}^2 a_w^2 / \gamma_j^0 \right) \delta a_x \exp(i \theta_0^0)$$

(57)

Note in Eq. (56) that we have factored out the (fast) orbital variations in $\delta \theta_j^0$ proportional to exp($\pm i \theta_0^0$). On the other hand, the amplitudes $\delta \psi_j^0$ and $\delta \psi_j^*$ in Eq. (56) describe the systematic variation of $\delta \theta_j^0$ induced by the slowly changing wave perturbation δa_x [see Eq. (57)].

Substituting Eq. (56) into the right-hand side of Eq. (54) gives

$$\left(\sum_j \exp(-i \theta_j^0) \delta \theta_j^0 \right) = \left(\sum_j \left(\delta \psi_j^0 + \delta \psi_j^* \exp(-2i \theta_0^0) \right) \right)$$

(58)

The term proportional to $\exp(-2i \theta_0^0)$ in Eq. (58) generally has fast oscillatory contributions from the trapped and untrapped electrons. As in single-particle analyses with $a_0^2 = 0$, we assume that this term averages to zero in the statistical average $\langle 2 \text{J}_1 \cdot \cdot \cdot \rangle$. Equation (54) then becomes

$$2a_0^2 \left(\frac{\partial}{\partial t'} + \frac{c^2 k_{1}^2}{\omega_1^2} \frac{\partial}{\partial x'} \right) \delta a_x = \frac{4 \pi \varepsilon_0^2}{m} \frac{1}{L'} \left(\sum_j \delta \psi_j^* \right) \gamma_j^0$$

(59)

where the slow evolution of $\delta \psi_j^0$ is determined in terms of δa_x from Eq. (57).

C. Sideband Instability

The coupled linearized equations (57) and (59) can be used to investigate detailed stability properties for a wide variety of untrapped- and trapped-electron populations. For present purposes, however, we focus on the sideband instability, assuming that the trapped electrons are deeply trapped near the bottom of the ponderomotive potential with energy $\gamma_j^0 = \gamma_j^0$ [Eq. (52)] and average density $\bar{n}_j = \text{const}$. The t' and x' dependences of the wave perturbation δa_x are assumed to be of the form

$$\exp[-i(\Delta \omega t' + i(\Delta k') x')]$$

(60)

where Im$(\Delta \omega) > 0$ corresponds to temporal growth. Approximating $\gamma_j^0 \approx (1 + a_w^2)^{1/2} = \gamma_j^0$, the wave equation (59) becomes

$$-2a_0^2 \left(\Delta \omega - \frac{c^2 k_{1}^2}{\omega_1^2} \Delta k' \right) \delta a_x = \frac{a_w \delta \psi_j^0}{\gamma_j^0}$$

(61)

for perturbation frequency $\Delta \omega$ and wavenumber $\Delta k'$ characteristic of the trapped-electron motion. In Eq. (61), $\delta \psi_j^0 = 4 \pi n e^2 / m = 4 \pi n e^2 / \gamma_j^0 m$, and the subscript j has been dropped from $\delta \psi_j^0$. For deeply trapped electrons, it also follows that $\gamma_j^0 \approx 2\pi n(1 + 1, \pm 1, \pm 2, \ldots)$ and $\delta \psi_j^0 / a_x = 0$ in the linearized orbit equation (57). Therefore Eq. (57) can be approximated by

$$\left[- \left(\Delta \omega \right)^2 + \frac{\delta \psi_j^0(\gamma_j^0)}{\gamma_j^0} \right] \delta a_x = - \frac{c^2 k_{1}^2 a_w^2}{2i \gamma_j^0}$$

(62)

Combining Eqs. (61) and (62) readily gives the desired dispersion relation

$$\left(\Delta \omega - \frac{c^2 k_{1}^2}{\omega_1^2} \Delta k' \right) \left[(\Delta \omega)^2 - \delta \psi_j^0(\gamma_j^0) \right] = \frac{a_w^2 \delta \psi_j^0 c^2 k_{1}^2}{4 \omega_1^2 \gamma_j^0}$$

(63)

which determines $\Delta \omega$ in terms of $\Delta k'$ and other system parameters.

It is useful to transform $\Delta \omega'$ and $\Delta k'$ in Eq. (63) back to the laboratory frame, and introduce the small dimensionless parameter Γ_0^0 defined in Eq. (39). In this regard, making use of $\omega_1^0 = \gamma_j^0 k_0 \omega_p$ and $k_1^0 = (k_z + k_0) / \gamma_j^0 = \gamma_j^0 (1 + v_p / c) k_0$ [Eq. (38)], the right-hand side of Eq. (63) is readily expressed as

$$\frac{a_w^2 \delta \psi_j^0 c^2 k_{1}^2}{4 \omega_1^0 \gamma_j^0} = \gamma_j^0 (1 + v_p / c) \Gamma_0^0 c^2 k_0^3$$

(64)

Moreover, it follows from Eq. (9) that

$$\Delta \omega' = \gamma \Delta \omega - v_p \Delta k, \quad \Delta k' = \gamma \Delta k - (v_p / c^2) \Delta \omega,$$

(65)

where $\Delta \omega$ and Δk are the frequency and wavenumber of the perturbation in the laboratory frame. Consistent with neglecting beam dielectric effects (see Sec. IV), we approximate $\alpha_0^0 = c k_0^0$ and $\Delta \omega' = (c^2 k_{1}^2 / \omega_1^2) \Delta k' = \Delta \omega - \Delta k^2$ on the left-hand side of Eq. (63). Making use of Eq. (65), it follows that

R. C. Davidson and J. S. Wurtele

563
\[\Delta \omega' - c \Delta k' = \gamma_p \left(1 + \frac{v_p}{c}\right) \left((\Delta \omega - v_p \Delta k) - c k_0 \frac{v_p}{c} \frac{\Delta k}{k_0}\right), \]

where \(k_0 = \gamma_p^2 (1 + v_p/c)(v_p/c) k_0 \) is defined in Eq. (37).

We further introduce the shorthand notation

\[\Delta \Omega = \Delta \omega - v_p \Delta k, \quad \Delta K = k_0 (v_p/c) (\Delta k / k_0). \]

Substituting Eqs. (64)-(67) into Eq. (63) then gives the dispersion relation

\[(\Delta \Omega - c \Delta K) \left(\frac{(\Delta \Omega)^2}{\Omega_b^2} - \frac{\Omega_b^2}{\Omega_b^2}
ight) = \Gamma_0 c^2 k_0^3, \]

(68)

where \(\Omega_b = \left(c^2 k_0^2 a_{\Omega b}^2 / \gamma_p^2 \right)^{1/2} \) is the bounce frequency in the laboratory frame, and \(\Gamma_0 \) is defined in Eq. (39).

The dispersion relation (68) is equivalent to Eq. (63). Most striking is the fact that Eq. (68) is identical (neglecting beam dielectric effects) to the cubic limit of the \textit{kinetic} dispersion relation\(^{19,20}\) derived for deeply trapped electrons assuming constant equilibrium amplitude \(a_{\Omega b}^2 \) and phase \(\delta_0 \) of the primary electromagnetic wave \((\omega_0, k_0)\). Equation (68) is analyzed extensively in Ref. 20, where the growth rate \(\text{Im}(\Delta \Omega) \) and real oscillation frequency \(\text{Re}(\Delta \Omega) \) are calculated in terms of \(\Delta K, \Omega_b, \) and \(\Gamma_0 k_0 \) over a wide range of system parameters. For present purposes we summarize selected key results.

(a) A detailed investigation\(^{20}\) of Eq. (68) over a wide range of system parameters shows that the maximum growth rate occurs for frequency and wavenumber in the vicinity of

\[\Delta \Omega \approx - \Omega_b, \quad \Delta K \approx - \Omega_b / c. \]

(69)

Note that Eq. (69) corresponds to the \textit{lower} sideband, which exhibits strong instability. [As discussed in Ref. 19, excitation of the \textit{lower} sideband is associated with the assumption that the wave perturbation has (nearly) right-circular polarization. For wave perturbations with left-circular polarization, it is found\(^{19}\) that the \textit{upper} sideband exhibits instability.]

(b) We introduce the shifted frequency \(\Delta \tilde{\Omega} \) and wavenumber \(\Delta \tilde{K} \) defined by

\[\Delta \Omega = - \Omega_b + \Delta \tilde{\Omega}, \quad \Delta K = - \Omega_b / c + \Delta \tilde{K}. \]

(70)

Making use of (70), the dispersion relation (68) can be expressed in the equivalent form

\[(\Delta \tilde{\Omega}) (\Delta \tilde{\Omega} - 2 \Omega_b) (\Delta \tilde{\Omega} - c \Delta \tilde{K}) = \Gamma_0^2 c^2 k_0^3. \]

(71)

Because maximum growth is found\(^{20}\) to occur for \(\Delta \tilde{K} \approx 0 \), we solve Eq. (71) for the case \(\Delta \tilde{K} \approx 0 \), exactly. The solution to

\[(\Delta \tilde{\Omega})^3 - 2 \Omega_b (\Delta \tilde{\Omega})^2 - \Gamma_0^2 c^2 k_0^3 = 0 \]

determines the characteristic maximum growth rate \(\text{Im}(\Delta \tilde{\Omega}) = \text{Im}(\Delta \omega) \).

Some straightforward algebra gives

\[\text{Im}(\Delta \omega) = \frac{\Gamma_0 k_0 c}{2} \left(1 + \frac{32}{27} \frac{\Omega_b^3}{\Gamma_0^3 k_0^3 c^3}\right)^{1/3} \]

\[\times \left[1 + \left(1 + \frac{32}{27} \frac{\Omega_b^3}{\Gamma_0^3 k_0^3 c^3}\right)^{-1/2}\right]^{1/3} \]

\[- \left[1 - \left(1 + \frac{32}{27} \frac{\Omega_b^3}{\Gamma_0^3 k_0^3 c^3}\right)^{-1/2}\right]^{1/3} \]

(72)

for \(\Delta \tilde{K} = 0 \).

\[\text{FIG. 2. Plot of normalized growth rate } \text{Im}(\Delta \omega)/(3^{1/3} \Gamma_0 k_0 c/2) \text{ versus dimensionless pump strength } \Omega_b / \Gamma_0 k_0 c \text{ and } \Delta \tilde{K} = 0 \text{ [Eq. (72)].} \]

(c) In the weak-pump regime \((\Omega_b \ll \Gamma_0 k_0 c)\), Eq. (72) reduces to

\[\text{Im}(\Delta \omega) = \left(3^{1/3} / 2\right) \Gamma_0 k_0 c, \quad \text{for } \Omega_b \ll \Gamma_0 k_0 c. \]

(73)

On the other hand, in the strong-pump regime \((\Omega_b \gg \Gamma_0 k_0 c)\), Eq. (72) gives

\[\text{Im}(\Delta \omega) = \frac{\Gamma_0 k_0 c}{2} \left(\frac{\Gamma_0 k_0 c}{\Omega_b}\right)^{1/3}, \quad \text{for } \Omega_b \gg \Gamma_0 k_0 c. \]

(74)

Figure 2 shows a plot of \(\text{Im}(\Delta \omega)/(3^{1/3} \Gamma_0 k_0 c/2) \) versus the normalized pump strength \(\Omega_b / \Gamma_0 k_0 c \) calculated from Eq. (72). It is evident from Eq. (72) and Fig. 2 that \(\text{Im}(\Delta \omega) \) exhibits a simple scaling with \(\Omega_b / \Gamma_0 k_0 c \) only in the asymptotic limits in Eqs. (73) and (74). Moreover, the instability growth rate is greatly reduced as the pump strength is increased to large values [compare Eqs. (73) and (74)]. Although the details will not be presented here, it is also found\(^{20}\) that the instability bandwidth in \(\Delta K \) space decreases substantially as \(\Omega_b / \Gamma_0 k_0 c \) is increased. Indeed, the range of \(\Delta \tilde{K} \) corresponding to instability can be approximated by \(\Delta \tilde{K} = \frac{\Gamma_0}{k_0 c} (27 \Omega_b^3 / \Gamma_0^3) \) in the strong-pump regime with \(\Omega_b / \Gamma_0 k_0 c \gg 1 \).

(d) As a final point, because \(\Gamma_0 \propto \hbar^{-1/2} \), the scaling of \(\text{Im}(\Delta \omega) \) with trapped electron density \(\hbar \) (or current) varies from \(\hbar^{1/3} \) in the weak-pump regime [Eq. (73)] to \(\hbar^{1/2} \) in the strong-pump regime [Eq. (74)]. This is in contrast with the analysis in Sec. VI where \textit{all} of the electrons are deeply trapped and the characteristic growth rate scales as \(\hbar^{1/3} \) in the strong-pump regime \((\Omega_b \gg \Gamma_0 k_0 c)\) and as \(\hbar^{2/3} \) in the weak-pump regime \((\Omega_b \ll \Gamma_0 k_0 c)\).

VI. SIdEBAND INSTABILITY FOR PRIMARY ELECTROMAGNETIC WAVE WITH SLOWLY VARYING PHASE

In this section we make use of Eqs. (24), (25), and (35) to investigate detailed properties of the sideband instability in circumstances where \textit{all} of the electrons are deeply trapped near the bottom of the ponderomotive potential
with energy \(\gamma'' \approx \dot{\gamma} \) [Eq. (52)] and average density
\(\bar{n} = \bar{n}_r / \gamma'' = \text{const.} \) For deeply trapped electrons, Eqs. (24), (25), and (35) can be approximated by

\[
\begin{align*}
\frac{\partial}{\partial t'} + \frac{c^2 k_i'}{\omega_i'} \frac{\partial}{\partial \omega_i'} \frac{\partial}{\partial \omega_i'} \tilde{a}_i \left(\frac{a_{\omega_i'} \dot{\omega}_{\omega_i'}^2}{2 \omega_i'^2} \right) \sin(\theta_i' + \delta_i') = 0, \\
\frac{d^2}{dt'^2} \theta_i' + \frac{c^2 k_i'^2 a_{\omega_i'} \tilde{a}_i}{\omega_i'^2} \sin(\theta_i' + \delta_i') = 0,
\end{align*}
\]

where \(\dot{\omega}_{\omega_i'} = 4 \pi n_i c^2 / m_i \). In Eqs. (75)–(77), the subscripts \(j \) have dropped from \(\theta_i' \); use has been made of \(a_{\omega_i'} = \tilde{a}_i \) \(\exp(i \delta_i') \); and we have taken the characteristic energy of the trapped electrons to be \(\gamma'' = (1 + a_{\omega_i'})^{1/2} \) [Eq. (41)]. Moreover, \(\theta_i' = \delta_i' = \pm 2 \pi n_i (n = 0, 1, \pm 2, ...) \) for the deeply trapped electrons assumed in Eqs. (75)–(77). Without loss of generality, we take \(n = 0 \) and expand Eqs. (75)–(77) for small \(\theta_i' + \delta_i' \). This readily gives

\[
\begin{align*}
\frac{\partial}{\partial t'} + \frac{c^2 k_i'}{\omega_i'} \frac{\partial}{\partial \omega_i'} \tilde{a}_i \left(\frac{a_{\omega_i'} \dot{\omega}_{\omega_i'}^2}{2 \omega_i'^2} \right) \theta_i' = 0, \\
\frac{d^2}{dt'^2} \theta_i' + \frac{c^2 k_i'^2 a_{\omega_i'} \tilde{a}_i}{\omega_i'^2} \theta_i' = 0,
\end{align*}
\]

correct to lowest order. Unlike the analysis in Sec. V, a striking feature of Eqs. (78)–(80) is that there is necessarily a variation in the zero-order phase \(\delta_i' \) predicted by Eq. (79).

A. Equilibrium model

An approximate quasi-steady equilibrium state consistent with Eqs. (78)–(80) is described by

\[
\begin{align*}
\theta_i' + \delta_i' &= 0, \\
\frac{\partial}{\partial t'} \tilde{a}_i &= \frac{\partial}{\partial \omega_i'} \tilde{a}_i, \\
\frac{\partial}{\partial t'} \delta_i' &= 0, \\
\frac{\partial}{\partial \omega_i'} \delta_i' &= 0,
\end{align*}
\]

and

\[
\begin{align*}
\frac{\partial}{\partial t'} \tilde{a}_i &= 0, \\
\frac{\partial}{\partial \omega_i'} \tilde{a}_i &= 0,
\end{align*}
\]

which is that the equilibrium wave amplitude \(\delta_i' \) is constant (independent of \(t' \) and \(\omega_i' \)), whereas there is a slow variation of the wave phase \(\delta_i' \) with \(\omega_i' \) as described by Eq. (83). Making use of \(\omega_i' = \gamma_p k_i p \) and \(k_i' = \gamma_p(1 + v_p/c)k_0 \) [Eq. (38)], it is readily shown that

\[
\begin{align*}
\frac{\partial}{\partial \omega_i'} \delta_i' &= 0, \\
\frac{\partial}{\partial \omega_i'} \omega_i' &= \frac{a_{\omega_i'} \dot{\omega}_{\omega_i'}^2}{2 \omega_i'^2} \tilde{a}_i, \\
\frac{\partial}{\partial \omega_i'} \tilde{a}_i &= \frac{a_{\omega_i'} \dot{\omega}_{\omega_i'}^2}{2 \omega_i'^2} \tilde{a}_i,
\end{align*}
\]

where the small parameter \(\epsilon \) is defined by

\[
\epsilon = 2 \Gamma_0 (\Gamma_c k_0 / \Omega_b)^2 < 1.
\]

Note that \(\epsilon < 1 \) is required in the present analysis in order that the change in \(\delta_i' \) is small over the scale length of the ponderomotive potential \(\lambda_i' = 2 \pi k_i'^{-1} \). Unlike the stability analysis in Sec. V, Eq. (86) requires that the pump amplitude be above a certain small threshold value \((\Omega_b^2 / c^2 k_i'^2) > 2 \Gamma_0^2 \) for the present analysis to be valid.

B. Linear stability analysis and dispersion relation

We now express \(\tilde{a}_i = \tilde{a}_i' + \delta_i ' e^{i \theta_i'} \), \(\delta_i' = \delta_i' + \delta_i'' \), and \(\theta_i' = \theta_i + \delta_i'' \), where \(\delta_i', \delta_i'', \) and \(\theta_i'' \) denote small perturbations. Linearizing Eqs. (78)–(80) about the equilibrium state described by Eqs. (81)–(83) readily gives

\[
\begin{align*}
\frac{\partial}{\partial t'} + \frac{c^2 k_i'}{\omega_i'} \frac{\partial}{\partial \omega_i'} \tilde{a}_i &= \epsilon a_{\omega_i'} \dot{\omega}_{\omega_i'}^2 \tilde{a}_i \theta_i' + \delta_i' e^{i \theta_i'} = 0, \\
\frac{\partial}{\partial t'} + \frac{c^2 k_i'}{\omega_i'} \frac{\partial}{\partial \omega_i'} \tilde{a}_i &= \epsilon a_{\omega_i'} \dot{\omega}_{\omega_i'}^2 \tilde{a}_i \theta_i' + \delta_i' e^{i \theta_i'} = 0,
\end{align*}
\]

in Eq. (88). As in Sec. V, we assume that the \(\theta_i' \) dependence of the perturbed quantities in Eqs. (87)–(89) is proportional to \(\exp[-(i \Delta \omega' t' + i \Delta \omega' k') \omega_i'] \), where \(\text{Im}(\Delta \omega') > 0 \) corresponds to temporal growth. Approximating \(\omega_i' = \epsilon k_i' \), Eqs. (87)–(89) readily give

\[
\begin{align*}
- i (\Delta \omega' - c k_i') \delta_i' &= \epsilon a_{\omega_i'} \dot{\omega}_{\omega_i'}^2 \tilde{a}_i \theta_i' + \delta_i'' e^{i \theta_i''}, \\
- i a_{\omega_i'} (\Delta \omega' - c k_i') \delta_i' &= - \epsilon \omega_i' k_i' \delta_i' + \delta_i'' e^{i \theta_i''}, \\
\left[(\Delta \omega')^2 - \epsilon \omega_i' k_i' \delta_i' \right] \delta_i'' e^{i \theta_i''} &= (\Delta \omega')^2 \delta_i'.
\end{align*}
\]

After some straightforward algebraic manipulation, Eqs. (90)–(92) give the desired dispersion relation

\[
0 = 1 - \frac{\epsilon a_{\omega_i'} \dot{\omega}_{\omega_i'}^2}{(\Delta \omega')^2} - \frac{c^2 k_i'^2}{(\Delta \omega' - c k_i')},
\]

which determines \(\Delta \omega' \) in terms of \(\Delta k' \) and other system parameters. The dispersion relation (93) has also been derived by Rosenbluth22 for the case where the equilibrium wave phase is slowly varying [Eq. (85)].

Paralleling the analysis in Sec. V, we transform \(\Delta \omega' \) and \(\Delta k' \) back to the laboratory frame according to Eq. (65). Making use of Eqs. (65)–(67) and the relations \(k_p' = \gamma_p(1 + v_p/c)k_0 \) [Eq. (38)], it is readily shown that Eq. (93) can be expressed in the equivalent form

\[
0 = 1 - \frac{\Omega_b^2}{(\Delta \Omega)^2} - \frac{\Omega_b^2 (\Gamma_c k_0 / \Omega_b)^2}{(\Delta \Omega - c k_p')}
\]

Here \(\Delta \Omega = \Delta \omega - v_p \Delta k, \Delta k' = k_0 (v_p / c) (\Delta k / k_p) \), and \(\Omega_b = (c^2 k_p'^2 a_{\omega_i'} \dot{\omega}_{\omega_i'}^2 / \gamma_p^2) < 2 \Gamma_0^2 \) is the bounce frequency in the laboratory frame for deeply trapped electrons.
C. Sideband Instability

Equation (94) has the familiar form of the dispersion relation for the two-stream instability.73,74 Here $\Omega_b^2 \rightarrow \delta\omega_b^2$ plays the role of the first plasma component and $\Omega_b^2 4(\Gamma_0 k_0/\Omega_b)^6 \rightarrow \delta\omega_b^2$ plays the role of the second plasma component, which is drifting with velocity c relative to the first component. Equation (94) can be solved numerically for the real oscillation frequency $\text{Re}(\Delta\omega)$ and growth rate $\text{Im}(\Delta\omega)$ in terms of $c\Delta K$, Ω_b, and $\Omega_b/\Gamma_0 k_0 c$ over a wide range of system parameters. For present purposes, we make use of analytical estimates to determine the instability bandwidth and maximum growth rate from Eq. (94).

First, it can be shown from Eq. (94) that instability exists [$\text{Im}(\Delta\omega) = \text{Im}(\delta\omega) > 0$] for ΔK in the range

$$-\Delta K_b < \Delta K < \Delta K_b,$$

where the bandwidth ΔK_b is given (exactly) by

$$c\Delta K_b = \Omega_b \left(1 + \left[4(\Gamma_0 k_0/\Omega_b)^6\right]^{1/3}\right)^{3/2}.\tag{96}$$

As illustrated schematically in Fig. 3, the growth rate $\text{Im}(\Delta\omega)$ is equal to zero for $\Delta K = 0$ and $\Delta K = \pm \Delta K_M$ and achieves its maximum value at $\Delta K = \pm \Delta K_M$. Equation (96) is valid for arbitrary pump strength ranging from the strong-pump regime ($\Omega_b/\Gamma_0 k_0 c > 1$) to the weak-pump regime ($\Omega_b/\Gamma_0 k_0 c < 1$). Moreover, it can be shown exactly from Eq. (94) that the real oscillation frequency of the unstable branch increases from

$$\text{Re}(\Delta\omega) = 0, \quad \text{for } \Delta K = 0,$$

$$\text{Re}(\Delta\omega) = \text{Re}(\Delta\omega)_M = \Omega_b \left[1 + \left[4(\Gamma_0 k_0/\Omega_b)^6\right]^{1/3}\right]^{1/2}, \quad \text{for } \Delta K = \Delta K_M.\tag{98}$$

The range of oscillation frequencies described by Eqs. (97) and (98) corresponds to the upper sideband. On the other hand, for ΔK in the interval $-\Delta K_b < \Delta K < 0$, the lower sideband is unstable, and the polarity of $\text{Re}(\Delta\omega)$ is reversed relative to Eq. (98). Because $\text{Im}(\Delta\omega)$ is an even function of ΔK, and $\text{Re}(\Delta\omega)$ is an odd function of ΔK, without loss of generality we limit the subsequent analysis to the interval $0 < \Delta K < \Delta K_b$.

Although the bandwidth ΔK_b can be calculated analytically for arbitrary pump strength $\Omega_b/\Gamma_0 k_0 c$ [Eq. (96)], the growth rate $\text{Im}(\Delta\omega)$ must generally be determined numerically from Eq. (94). However, analytical estimates of the maximum growth rate can be made in both the weak-pump and strong-pump limits. In this regard, it should be kept in mind that $\Gamma_0 \ll 1$ is assumed in the present analysis [Eq. (39)].

1. Weak-pump regime ($\Omega_b/\Gamma_0 k_0 c < 1$)

In the weak-pump regime with $\Omega_b/\Gamma_0 k_0 c < 1$, we also require $(\Omega_b/\Gamma_0 k_0 c)^2 \geq 2 \Gamma_0$ in order to be consistent with the assumption of slowly varying phase $\delta\omega_b$, i.e., $\epsilon \ll 1$ in Eq. (86). For $\Omega_b/\Gamma_0 k_0 c < 1$, it follows from Eq. (96) that the instability bandwidth is given approximately by

$$c\Delta K_b = 2\Gamma_0 k_0 \left(\frac{\Omega_b}{\Gamma_0 k_0}\right)^2 \left[1 + \frac{3}{2} \left(\frac{\Omega_b}{\Gamma_0 k_0}\right)^2 + \cdots\right].\tag{99}$$

Because $(\Omega_b/\Gamma_0 k_0 c)^2 \geq 2 \Gamma_0$ is required, we note from Eq. (99) that the instability bandwidth ΔK_b in the weak-pump regime is relatively narrow in units of k_0. It can also be shown from Eq. (94) that the maximum growth rate $\text{Im}(\Delta\omega)_M = \text{Im}(\delta\omega)_M$ in the weak-pump regime can be approximated by

$$\text{Im}(\Delta\omega)_M = \left(3^{1/2}/2\right) \Gamma_0 k_0.\tag{100}$$

Moreover, maximum growth occurs for $\Delta K = \Delta K_M$, where ΔK_M is defined by

$$c\Delta K_M = 2\Gamma_0 k_0 \left(\frac{\Omega_b}{\Gamma_0 k_0}\right)^2 \left[1 + \frac{3}{16} \left(\frac{\Omega_b}{\Gamma_0 k_0}\right)^4 + \cdots\right].\tag{101}$$

Comparing Eqs. (99) and (101), we note that ΔK_M is only slightly downshifted from ΔK_b. That is, the growth rate $\text{Im}(\Delta\omega)$ is peaked very close to the upper end of the unstable wavenumber range in Fig. 3.

For specified values of $\Gamma_0 k_0$ and $\Omega_b/\Gamma_0 k_0 c < 1$, it is evident from Eqs. (73) and (100) that the growth rate in Eq. (100) is the same as the corresponding growth rate derived in Sec. V in the weak-pump regime. Moreover, because $\Gamma_0 \propto \delta\omega_b^{-1}$, the scaling of the growth rate with trapped-electron density (or current) is proportional to $\delta\omega_b^{-1}$ in Eqs. (73) and (100).

2. Strong-pump regime ($\Omega_b/\Gamma_0 k_0 c > 1$)

For $\Omega_b/\Gamma_0 k_0 c > 1$, it follows from Eq. (96) that the instability bandwidth ΔK_b is given approximately by

$$c\Delta K_b = \Gamma_0 k_0 \left(\frac{\Omega_b}{\Gamma_0 k_0}\right) \left[1 + \frac{3}{2} \left(\frac{\Gamma_0 k_0}{\Omega_b}\right)^2 + \cdots\right].\tag{102}$$

In units of $\Gamma_0 k_0$, it follows from Eq. (102) that the instability bandwidth ΔK_b is also relatively broad in the strong-pump regime. This is in contrast with the constant-phase case analyzed in Sec. V, where the (narrow) bandwidth ΔK_b is given approximately by $\Delta K_b = \Gamma_0 k_0 (2\Gamma_0 k_0 c/\Omega_b)^{1/2}$ in the strong-pump regime with $\Omega_b/\Gamma_0 k_0 c > 1$. Moreover, it can be
shown from Eq. (94) that the maximum growth rate in the strong-pump regime can be approximated by

$$\text{Im}(\Delta \Omega)_M = \left[(3)^{1/2}/(2)^{2/3} \right] \Gamma_0 c k_0 (\Gamma_0 c k_0 / \Delta \Omega)^1/2.$$ \hspace{1cm} (103)

Here maximum growth occurs for $\Delta K = \Delta K_M$, where ΔK_M is defined by

$$c \Delta K_M = \Gamma_0 c k_0 \left[\frac{\Omega_0}{\Gamma_0 c k_0} \left(1 + \frac{3}{(2)^{4/3}} \frac{(\Gamma_0 c k_0)^2}{\Omega_0^2} + \cdots \right) \right].$$ \hspace{1cm} (104)

Comparing Eqs. (74) and (103) for specified values of $\Gamma_0 c k_0$ and $\Omega_0 / \Gamma_0 c k_0 \gg 1$, it follows that the growth rate in Eq. (103) is smaller than the corresponding growth rate derived in Sec. V in the strong-pump regime. Moreover, because $\Gamma_0 \approx \hat{h}_T^{1/2}$, the growth rate scaling is proportional to $\hat{h}_T^{1/2}$ in Eq. (74) and proportional to $\hat{h}_T^{2/3}$ in Eq. (103).

3. Intermediate pump strength

The dispersion relation (94) must generally be solved numerically when $\Omega_0 / \Gamma_0 c k_0 \approx 1$. However, for the special case where

$$\Omega_0 / \Gamma_0 c k_0 = (2)^{1/3},$$ \hspace{1cm} (105)

the dispersion relation (94) can be solved exactly. Substituting Eq. (105) into Eq. (94) gives

$$0 = 1 - \Omega_0^2 / (\Delta \Omega)^2 - \Omega_0^2 / (\Delta \Omega - c \Delta K)^2,$$ \hspace{1cm} (106)

which is the two-stream dispersion relation for "equidensity" streams with effective plasma frequency Ω_0. It is readily shown from Eq. (106) that instability exists for ΔK in the range $-\Delta K < \Delta K < \Delta K$, where

$$c \Delta K = (2)^{1/2} \Omega_0.$$ \hspace{1cm} (107)

Moreover, the growth rate $\text{Im}(\Delta \Omega)$ and real oscillation frequency $\text{Re}(\Delta \Omega)$ of the unstable branch are given by

$$\text{Im}(\Delta \Omega) = \Omega_0 \left(1 + 8 (\Delta K / \Delta K_M)^2 \right)^{1/2} - 1 - 2 (\Delta K / \Delta K_M)^2 \right)^{1/2},$$ \hspace{1cm} (108)

$$\text{Re}(\Delta \Omega) = (2)^{1/2} \Omega_0 (\Delta K / \Delta K_M) = c \Delta K / 2,$$ \hspace{1cm} (109)

for ΔK in the interval $-\Delta K < \Delta K < \Delta K_M$. The maximum growth rate calculated from Eq. (108) is

$$\text{Im}(\Delta \Omega)_M = \frac{1}{2} \Omega_0,$$ \hspace{1cm} (110)

which occurs for $\Delta K = \pm \Delta K_M$, where ΔK_M is defined by

$$\Delta K_M = (\frac{1}{2})^{1/2} \Delta K_b.$$ \hspace{1cm} (111)

At intermediate pump strengths ($\Omega_0 / \Gamma_0 c k_0 \approx 1$), it is clear from Eqs. (109)–(111) that the characteristic oscillation frequency and growth rate of the sideband instability are of the order of bounce frequency Ω_0.

Comparing Eqs. (100) and (110) for specified $\Gamma_0 c k_0$, it is evident that the maximum growth rate $\text{Im}(\Delta \Omega)_M$ varies only slightly for $\Omega_0 / \Gamma_0 c k_0$ in the range

$$2 \Gamma_0 < \Omega_0 / \Gamma_0 c k_0 \approx (2)^{1/3}.$$ \hspace{1cm} (112)

On the other hand, in the strong-pump regime with $\Omega_0 / \Gamma_0 c k_0 \gg 1$, it follows from Eq. (103) that $\text{Im}(\Delta \Omega)_M$ decreases rapidly with

$$\text{Im}(\Delta \Omega)_M = \left[(3)^{1/2}/(2)^{2/3} \right] \Gamma_0 c k_0 \left(\Omega_0 / \Gamma_0 c k_0 / \Omega_0 \right).$$ \hspace{1cm} (113)

FIG. 4. Plot of normalized maximum growth rate $\text{Im}(\Delta \Omega)_M / \left((3)^{1/2}/(2)^{2/3} \right) \Gamma_0 c k_0$ versus dimensionless pump strength $\Omega_0 / \Gamma_0 c k_0$ calculated numerically from Eq. (94).

This is illustrated in Fig. 4 where the normalized maximum growth rate $\text{Im}(\Delta \Omega)_M / \left((3)^{1/2}/(2)^{2/3} \right) \Gamma_0 c k_0$ calculated numerically from the dispersion relation (94) is plotted versus the dimensionless pump strength $\Omega_0 / \Gamma_0 c k_0$.

Table I

<table>
<thead>
<tr>
<th>Dispersion relation (68)</th>
<th>Dispersion relation (94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\delta' = \text{const})$</td>
<td>$(\delta' = \text{const})$</td>
</tr>
<tr>
<td>$\text{Re}(\Delta \Omega)_M / \Gamma_0 c k_0$</td>
<td>$\frac{3}{2}$ for $\Gamma_0 c k_0 < 1$</td>
</tr>
<tr>
<td>$\Delta K_b / \Gamma_0 c k_0$</td>
<td>$\frac{1}{2}$ for $\Gamma_0 c k_0 > 1$</td>
</tr>
</tbody>
</table>

Weak-pump regime ($\Omega_0 / \Gamma_0 c k_0 < 1$)

$\text{Im}(\Delta \Omega)_M / \Gamma_0 c k_0$	$\frac{3}{2}$ for $\Gamma_0 c k_0 < 1$
$\Delta K_b / \Gamma_0 c k_0$	$\frac{1}{2}$ for $\Gamma_0 c k_0 > 1$
$\text{Re}(\Delta \Omega)_M / \Gamma_0 c k_0$	$\frac{1}{2}$ for $\Gamma_0 c k_0 > 1$

Intermediate-pump regime ($\Omega_0 / \Gamma_0 c k_0 = 1$)

$\text{Im}(\Delta \Omega)_M / \Gamma_0 c k_0$	0.67
$\Delta K_b / \Gamma_0 c k_0$	4
$\text{Re}(\Delta \Omega)_M / \Gamma_0 c k_0$	-1

Strong-pump regime ($\Omega_0 / \Gamma_0 c k_0 > 1$)

$\text{Im}(\Delta \Omega)_M / \Gamma_0 c k_0$	$\left(\Gamma_0 c k_0 / 2 \Omega_0 \right)^{1/2}$
$\Delta K_b / \Gamma_0 c k_0$	$2 \left(\Gamma_0 c k_0 / \Omega_0 \right)^{1/2}$
$\text{Re}(\Delta \Omega)_M / \Gamma_0 c k_0$	$-\left(\Omega_0 / \Gamma_0 c k_0 \right)$
normalized real oscillation frequency at maximum growth Re(ΔΩ)/Γγc0kγ for pump strengths ranging from the weak-pump regime (Ωγ/Γγc0kγ < 1) to the strong-pump regime (Ωγ/Γγc0kγ > 1). For Ωγ/Γγc0kγ > 1, a very striking result evident from Table I is that the sideband instability described by Eq. (94) has a broad bandwidth with ΔKγ/Γγc0kγ = Ωγ/Γγc0kγ > 1, whereas the sideband instability described by Eq. (68) has a narrow bandwidth with ΔKγ/Γγc0kγ = (2Γγc0kγ/Ωγ) 1/2 < 1.

It should also be pointed out that the frequency bandwidth Δνγ can be estimated in the various regimes illustrated in Table I. For example, in the case of slowly varying equilibrium phase [Eq. (94)], we obtain
\[Δνγ = Δν + νp Δkγ = ± Ωγ \]

in the strong-pump regime (Ωγ/Γγc0kγ > 1). Here
\[νp Δkγ = c (\frac{kγ}{kγ'} ΔKγ) = γ^2 (1 + \frac{νp}{c}) \frac{νp}{c} Ωγ \]

follows from Eqs. (37), (67), and (102). This gives Δνγ = γ^2 (1 + νp/c)υp/c ± Ωγ, where the term ± Ωγ represents a small correction.

VII. CONCLUSIONS

In the present analysis, a single-particle model based on Eqs. (24), (25), and (35) has been used to investigate properties of the sideband instability for small-amplitude perturbations about a primary electromagnetic wave with constant amplitude δ^2 = const (independent of z and t). Two cases were treated. The first case (Sec. V) assumed constant equilibrium wave phase δ^2 = const, which requires (for self-consistency) both untrapped- and trapped-electron populations satisfying \(\frac{X}{γp} γ^{-1} \exp(iθγ + δ^2) = 0 \) [Eq. (49)]. This is analogous to the case studied by Davidson et al. using the Vlasov–Maxwell equations. The second case (Sec. VI) assumed that all of the electrons are trapped, which requires a slow spatial variation of the equilibrium wave phase δ^2γ/δx ≠ 0. The resulting dispersion relations and detailed stability properties were found to be quite different in the two cases. For deeply trapped electrons, it was shown that the dispersion relations are given by Eq. (68) for δ^2 = const, and by Eq. (94) for δ^2/δz = 2Γγ/Γγc0kγ/Ωγ 2kγ ≠ 0. The two dispersion relations and the corresponding properties of the sideband instability were examined in detail in Secs. V and VI. We summarize below some of the key results.

First, in the weak-pump regime (Ωγ/Γγc0kγ ≪ 1), the characteristic maximum growth rate of the sideband instability is substantial with Im(ΔΩ)/Γγc0kγ = (3)^1/2/2 in both cases [Eqs. (73) and (100)]. Second, in the strong-pump regime (Ωγ/Γγc0kγ > 1), it is found that the maximum growth rate is reduced significantly, with Im(ΔΩ)/Γγc0kγ = 27/2 (Γγc0kγ/Ωγ) 1/2 < 1 for the case of constant phase δ^2 = const [Eq. (68)], and Im(ΔΩ)/Γγc0kγ = (3)^1/2/[27/2] (Γγc0kγ/Ωγ) 1/2 < 1 for the case of slowly varying δ^2 = const. It is also found that the instability bandwidth ΔKγ in ΔK space is generally different in the two cases. For example, in the strong-pump regime (Ωγ/Γγc0kγ > 1), we obtain ΔKγ/Γγc0kγ = (2Γγc0kγ/Ωγ) 1/2 < 1 from Eq. (68), whereas ΔKγ/Γγc0kγ = Ωγ/Γγc0kγ > 1 follows from Eq. (94). Finally, for the case of slowly varying phase δ^2 = const [Eq. (94)], it is found that both the upper and lower sidebands are unstable, with Re(ΔΩ) > 0 for ΔK > 0 and Re(ΔΩ) < 0 for ΔK < 0. In contrast, for δ^2 = const, it is found from Eq. (68) that only the lower sideband is unstable. This is associated with the fact that the wave perturbation is assumed to have right-circular polarization in deriving Eq. (68). For δ^2 = const and wave perturbations with left-circular polarization, it is readily shown that the upper sideband is unstable.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the benefit of useful discussions with Richard Aamodt, Marshall Rosenbluth, Andrew Sessler, and Simon Yu.

This research was supported in part by the Los Alamos National Laboratory and in part by the Office of Naval Research.

42. J. Goldstein, in Ref. 35, p. 2.
72. M. N. Rosenbluth (private communication).
73. I. B. Bernstein and S. K. Trehan, Nucl. Fusion 1, 3 (1960); see also pp. 21-23.