Efficiency enhancement in cyclotron autoresonance maser amplifiers by magnetic field tapering

C. Chen and J. S. Wurtele

Department of Physics and Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 13 March 1989)

The efficiency of cyclotron autoresonance maser (CARM) amplifiers with piecewise linear tapering of the magnetic field is analyzed. In the low-current limit, we find that increasing the magnetic field substantially enhances the efficiency if an effective detuning parameter is positive, while decreasing the magnetic field is advantageous when the detuning parameter is negative. For high-current high-gain CARM operation the efficiency of tapering is found to be reduced in a parameter regime where the saturation wave amplitude becomes of the order of the effective detuning parameter.

The cyclotron autoresonance maser (CARM), potentially a tunable high-power coherent radiation source from submillimeter to millimeter wavelengths, has attracted considerable attention. Extensive theoretical and computational effort has been made in the studies of the CARM interaction, including the theory of radiation amplification in the cyclotron resonance maser, the kinetic theory of CARM with both planar and circular electromagnetic waves, as well as waveguide mode configurations, the nonlinear efficiency studies, the stabilization of the CARM instability by intense electron beams and momentum spread, absolute instabilities, and simulation studies of CARM amplifiers. Experimental results on the CARM oscillator and amplifier have been recently reported. The CARM interaction takes place when the electrons undergoing cyclotron motion in a uniform axial magnetic field $B_0 \hat{z}$ interact with an electromagnetic wave (ω, \mathbf{k}) propagating along the z direction. The cyclotron resonance condition is

$$\omega - kv_z = \frac{s\omega_{c0}}{\gamma},$$

where v_z and γ are, respectively, the axial velocity and relativistic mass factor of the electron beam, s is the harmonic number, $\omega_{c0} = eB_0/mc$ is the nonrelativistic cyclotron frequency, m and e are, respectively, the electron mass and charge, and c is the speed of light in vacuum. Making use of the phase velocity $v_p = \omega/k$ and taking $s=1$ (the fundamental cyclotron frequency), Eq. (1) becomes

$$\omega = \frac{\omega_{c0}}{\gamma(1 - \beta_i/\beta_p)} \equiv \omega_D,$$

where $\beta_i \equiv v_i/c$, $\beta_p \equiv v_p/c = \omega_0/ck_i$, and ω_D is known as the Doppler-shifted cyclotron frequency.

An important issue is how to enhance the CARM efficiency. The efficiency, denoted by η, is defined as $\eta = (\langle \gamma_0 \rangle - \langle \gamma \rangle) / (\langle \gamma_0 \rangle - 1)$, where $\langle \gamma_0 \rangle mc^2$ and $\langle \gamma \rangle mc^2$ are, respectively, the average initial and final energies of the electrons. One of the efficiency enhancement methods is to taper the external magnetic field, which has been used in the gyrotron, as well as in the induced resonance electron cyclotron maser. Although it has been indicated in simulations that the efficiency is dramatically enhanced by magnetic field tapering, the underlying physics is not well understood.

It is the purpose of this Rapid Communication to study the basic physics of efficiency enhancement by magnetic field tapering. In the low-current limit, we find that increasing (or decreasing) the magnetic field substantially enhances the efficiency when an effective detuning parameter D_{eff} is positive (or negative). [The definition of D_{eff} is given in Eq. (8)]. For high-current high-gain CARM operation, this result remains applicable, except when the saturation wave amplitude is large compared with the effective detuning parameter [see Eq. (10)].

Consider a beam of relativistic electrons of density n undergoing cyclotron motion in a magnetic field $B_0(z, r)$ interact with a right-hand polarized electromagnetic wave (ω, \mathbf{k}) described by the vector potential

$$A(z, t) = A(z) \left[\hat{z} \cos \phi(z, t) - \hat{r} \sin \phi(z, t) \right],$$

where $\phi(z, t) = k_z - \omega t + \delta(z)$ is the wave phase, and both the wave amplitude $A(z)$ and the phase shift $\delta(z)$ vary slowly within one wavelength. In polar coordinates, the magnetic field is assumed to have an azimuthally symmetric form

$$B_0(z, r) = B_{0z}(z) \hat{z} + B_{0r}(z, r) \hat{r},$$

where $B_{0r}(z, r) = -(r/2)[dB_{0z}(z)/dz]$ is the radial component of the magnetic field. Using a system of units in which $e = m = c = B_{0z}(0) = 1$, i.e., introducing the dimensionless variables and parameters

$$B_{0z}(z) \rightarrow B_{0z}(z)/B_{0z}(0), \quad \omega_{c0}(z) \rightarrow \omega_{c0}(z)/\Omega, \quad \omega_p / \Omega, \quad z \rightarrow cz/\Omega, \quad v_z \rightarrow v_z/c, \quad v_0 \rightarrow v_0/c,$$

$$p_0 \rightarrow p_0/\Omega, \quad p_r \rightarrow p_r/\Omega, \quad \text{and} A \rightarrow eA/mc^2,$$

with $\Omega = eB_{0z}(0)/mc$, we can write the magnetically ta-
pered CARM equations as
\[
\frac{d\psi}{dz} = k - \frac{\omega}{p_z} + \frac{\omega \psi_0(z)}{p_z} + \frac{\omega A \left(\frac{1}{v_p} - \frac{\gamma}{p_z} \right)}{v_p} \sin\psi + \frac{d\delta(z)}{dz}.
\]
(5a)

\[
\frac{d\gamma}{dz} = \frac{\omega A p_t \cos\psi}{p_z},
\]
(5b)

\[
\frac{d p_z}{dz} = \frac{k A p_t}{\cos\psi} - \frac{p_z^2}{2p_z B_{0z}} \frac{d B_{0z}}{dz},
\]
(5c)

\[
\frac{d A}{dz} = -\frac{\omega^2 v_0}{2k} \frac{p_t}{p_z} \cos\psi,
\]
(5d)

\[
\frac{d\delta}{dz} = \frac{\omega^2 v_0}{2k A} \left(\frac{p_t}{p_z} \sin\psi \right),
\]
(5e)

where \(\omega^2 = 4\pi e^2 n/m\) is the electron plasma frequency squared, \(v_{z0}\) is the axial velocity of the electron beam while entering the \(z \approx 0\) interaction region. Detailed derivations of the self-consistent equations describing the CARM amplifier with magnetic field tapering have been presented in Refs. 13 and 14. The first three equations describe the motion of the electrons in terms of the axial momentum \(p_z\), energy \(\gamma\), and phase \(\psi = k z - \omega t - \tan^{-1}(p_z/p_t) + \delta(z)\). The last two describe the wave evolution, where \(\cdots = N^{-1} \sum_i \cdots\) denotes the average over all the electrons. In this \(N\)-particle model, there are a total of \(3N+2\) equations since the transverse momentum \(p_t\) is solved from \(\gamma = (1 + p_z^2 + p_t^2)^{1/2}\). From Eqs. (5b) and (5d), the total energy flux of the electron beam and electromagnetic wave field \(n_{e0} \gamma \psi + (1/4\pi)\omega A^2\) is a constant of motion. Moreover, the magnetic moments of the electrons are adiabatically conserved in the absence of the wave field.

In the linear instability regime, the electrons undergo a transition from random- to bunched-phase distributions such that more electrons give up their kinetic energy to the electromagnetic wave. In the low-current limit, since the wave amplitude and spatial growth rate are small, such phase bunching can be described as follows. Let us consider an untapered CARM amplifier operating at the frequency
\[
\omega = \omega_0 + \Delta\omega \equiv \frac{\omega_0}{\gamma_0 (1 - v_{z0}/v_0)} + \Delta\omega,
\]
(6)

where \(\Delta\omega\) and \(\gamma_0\) are, respectively, the frequency detuning and initial beam energy. By differentiating Eq. (5a) and making use of Eqs. (5b), (5c), and (6), and the fact that \(p_t(x) - p_{t0} = 0(A)\) and \(p_z(x) - p_{z0} = 0(A)\), it is straightforward to show that the dynamics of the electron phase \(\psi\) is approximately governed by the pendulum equation
\[
\frac{d^2\psi}{dz^2} = D_{\text{eff}} \left(\frac{k^2 \theta_{p0}}{p_{z0}} \right) A(z) \cos\psi + 0(A^2),
\]
(7)

where \(\theta_{p0} = p_{t0}/p_{z0}\) is the initial pitch angle of the electron beam. Here we have introduced an effective detuning parameter
\[
D_{\text{eff}} = 1 - v_{z0}^2 + \left[\frac{v_p}{v_{z0}} - 1 \right] + \left[\frac{v_p}{v_{z0}} - 1 \right]^2 \frac{\Delta\omega}{\omega}.
\]
(8)

Thus, the electrons bunch at the synchronous phase \(\psi(z) = \pi/2\) for \(D_{\text{eff}} > 0\), since the stable fixed point is located at \((\psi, d\psi/dz) = (\pi/2, 0)\) and the unstable fixed point at \((\psi, d\psi/dz) = (3\pi/2, 0)\). For \(D_{\text{eff}} < 0\), the synchronous phase is \(\psi(z) = 3\pi/2\). \(D_{\text{eff}}\) vanishes when \(v_p = 1\) and \(\Delta\omega = 0\), revealing the well-known cyclotron autoresonance phenomenon, where the electrons remain in synchronization with the electromagnetic wave in the course of evolution. Typically, the growth rate is small when \(D_{\text{eff}} = 0\).

To get an intuitive picture of efficiency enhancement using magnetic field tapering, it suffices to analyze the motion of the electrons with phases close to the synchronous phase \(\psi_s\). Since in the \((\psi, p_t)\) plane the phase dependence of the axial momenta of these electrons can be approximated as
\[
p_z(\psi) \approx p_z(\psi_s) + [dp_z(\psi_s)/d\psi](\psi - \psi_s),
\]

the change in \(d\psi/dz\), due to the magnetic field change \(\delta B_{0z}\) (or \(\Delta\omega_p\)), is then given by the Taylor expansion
\[
\Delta\left(\frac{d\psi}{dz} \right) = \frac{\delta\omega_0}{p_z(\psi_s)} \left[1 - \frac{1}{p_z(\psi_s)} \frac{dp_z(\psi_s)}{d\psi} (\psi - \psi_s) \right].
\]
(9)

where \(p_z(\psi_s)\) is the axial momentum of the electron with \(\psi = \psi_s\). We shall argue in the following that increasing (or decreasing) the magnetic field enhances the efficiency when \(D_{\text{eff}}\) is positive (or negative). For \(D_{\text{eff}} > 0\), both \(d\gamma(\psi_s)/d\psi\) and \(dp_z(\psi_s)/d\psi\) are negative before nonlinear saturation. This occurs because the synchronous electrons with \(\psi > \psi_s = \pi/2\) lose energy and axial momenta while those with \(\psi < \psi_s\) gain energy and axial momenta, as seen from Eqs. (5b) and (5c). Equation (9) implies that as the magnetic field increases, the synchronous electrons are forced to the right-hand side in the \((\psi, p_t)\) plane, so that the number of electrons with phases situated in the interval \((\pi/2, 3\pi/2)\) increases or the electrons continue losing energy on the average. In short, increasing (or downward tapering) the magnetic field yields efficiency enhancement when \(D_{\text{eff}} > 0\). Similarly, decreasing (or downward tapering) the magnetic field enhances the efficiency when \(D_{\text{eff}} < 0\).

Figure 1(a) shows the untapered and corresponding optimally tapered efficiencies as functions of the relative frequency detuning \(\Delta\omega/\omega_0\), obtained from self-consistent simulations with Eq. (5), cold electron beams, and piecewise linear tapering. For the results in Fig. 1(a), the simulations had \(v_{z0} = 1\), corresponding to the CARM operating in vacuum, \(\gamma_0 = 2.37\), and \(\theta_{p0} = 0.53\). The dimensionless electron plasma frequency \(\omega_p = 0.05\), which is representative of the low-current limit. In order to obtain the tapered efficiencies, upward tapering was used for the high-frequency branch (\(\omega > \omega_p\)) and downward tapering for the low-frequency branch (\(\omega < \omega_p\)). To achieve optimal efficiency, we start tapering somewhat before nonlinear saturation occurs. Usually, the absolute value of the slope for optimal tapering ranges from \((0.04 \text{ to } 0.08)\) \(\Gamma B_{0z}(0)\), where \(\Gamma\) is the spatial growth rate. A similar plot is shown in Fig. 1(b) for \(v_{z0} = 1.03\) and \(\omega_p = 0.005\),
where only the negative D_{eff} branch is plotted since the growth rate is small for the positive D_{eff} branch and low current. Figure 1(b) corresponds to the CARM operating with a waveguide mode. [Since the transverse variation of the rf field and the forces due to the longitudinal rf field can be neglected under the conditions that $1 - v_{\phi}^{-2} \ll 1 - v_{\phi 0} / v_{\phi}$, the electron Larmor radius $r_L \ll 1 / k_z$, and the electron-beam radius $r_b \ll 1 / k_z$, the one-dimensional model given by Eq. (5) provides a good description for the CARM operating in a waveguide mode.]

For high-current CARM operation, the validity of the pendulum equation (7) breaks down because the term of the order of A^2 cannot be ignored in the expansion. Indeed, when deriving Eq. (7), one has to differentiate, for instance, the sine term in Eq. (5a), which contributes a term of the order of $A^2 \sin(2\psi)$ to the right-hand side of Eq. (7). For example, if the term proportional to $A^2 \sin(2\psi)$ dominates, then the electrons will equally bunch at two phases differing by π. To the lowest order, tapering does not yield net gain in energy extraction because the electrons bunch at ψ, give up energy, while those at $\psi + \pi$ gain energy, or vice versa. Typically, multiple phase bunching occurs and the efficacy of tapering is reduced when the saturation wave amplitude A_{sat} is of the order of $D_{\text{eff}} |k^2\theta_{\phi 0}/p_z|$. A qualitative criterion for tapering to result in efficiency enhancement is

$$A_{\text{sat}} \ll |D_{\text{eff}}| \left(k^2 \theta_{\phi 0} / p_z \right).$$

(10)

In Fig. 2, we plot the untapered efficiency (dashed curve), corresponding tapered efficiency (solid curve), and dimensionless ratio $A_{\text{sat}} p_z / |D_{\text{eff}}| k^2 \theta_{\phi 0}$ (dotted curve) as functions of D_{eff}, where downward tapering is used and the parameters are the same as in Fig. 1(b), except now $\omega_p = 0.3$.

We conclude that in the low-current limit, the efficiency of CARM amplifiers can be substantially enhanced by increasing (or decreasing) the magnetic field if the effective detuning parameter is positive (or negative). Moreover, for high-current high-gain CARM operation this result remains valid, as long as condition (10) holds approximately. When condition (10) is violated, the effect of tapering on the coupling between the electrons and electromagnetic wave field becomes delicate and requires further investigations.

This work was supported by the U.S. Department of Energy, Division of Nuclear and High Energy Physics.